Fast Point Feature Histograms (FPFH) for 3D Registration

TitleFast Point Feature Histograms (FPFH) for 3D Registration
Publication TypeConference Paper
Year of Publication2009
AuthorsRusu, Radu Bogdan., Blodow, Nico., and Beetz, Michael
Conference NameThe IEEE International Conference on Robotics and Automation (ICRA)
Date Published05/2009
Conference LocationKobe, Japan

In our recent work [1], [2], we proposed Point Feature Histograms (PFH) as robust multi dimensional features which describe the local geometry around a point p for 3D point cloud datasets. In this paper, we modify their mathematical expressions and perform a rigorous analysis on their robustness and complexity for the problem of 3D registration for overlapping point cloud views. More concretely, we present several optimizations that reduce their computation times drastically by either caching previously computed values or by revising their theoretical formulations. The latter results in a new type of local features, called Fast Point Feature Histograms (FPFH), which retain most of the discriminative power of the PFH. Moreover, we propose an algorithm for the online computation of FPFH features for realtime applications. To validate our results we demonstrate their efficiency for 3D registration and propose a new sample consensus based method for bringing two datasets into the convergence basin of a local non-linear optimizer: SAC-IA (SAmple Consensus Initial Alignment).