On Fast Surface Reconstruction Methods for Large and Noisy Datasets

TitleOn Fast Surface Reconstruction Methods for Large and Noisy Datasets
Publication TypeConference Paper
Year of Publication2009
AuthorsMarton, Zoltan Csaba., Rusu, Radu Bogdan., and Beetz, Michael
Conference NameThe IEEE International Conference on Robotics and Automation (ICRA)
Date Published05/2009
Conference LocationKobe, Japan
Keywordsperception
Abstract

In this paper we present a method for fast surface reconstruction from large noisy datasets. Given an unorganized 3D point cloud, our algorithm recreates the underlying surface’s geometrical properties using data resampling and a robust triangulation algorithm in near realtime. For resulting smooth surfaces, the data is resampled with variable densities according to previously estimated surface curvatures. Incremental scans are easily incorporated into an existing surface mesh, by determining the respective overlapping area and reconstructing only the updated part of the surface mesh. The proposed framework is flexible enough to be integrated with additional point label information, where groups of points sharing the same label are clustered together and can be reconstructed separately, thus allowing fast updates via triangular mesh decoupling. To validate our approach, we present results obtained from laser scans acquired in both indoor and outdoor environments.

URLhttp://files.rbrusu.com/publications/Marton09ICRA.pdf