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Abstract— We describe an algorithm for detection of elec-
trical outlets in images obtained by a monocular camera. We
provide a method for calculating 3D coordinates of outlet holes
with accuracy high enough for a robot to plug in without visual
servoing. The paper proposes a novel algorithm for accurate
pose estimation of a small planar object. We use the plane
normal obtained from stereo data as a hard constraint for
a planar PnP problem. A different cost function is proposed
together with a closed-form solution for the object pose. This
system is used for continuous operation of a PR2 robot enabling
it to run for 2 weeks without human supervision.

I. INTRODUCTION

The purpose of this work is to develop a system that
enables a robot to plug itself into a standard electrical outlet.
This problem is an important step for mobile robotics to-
wards continuous autonomous operation. Plugging in allows
a robot to travel long distances in a building and use the
nearest outlet when the battery charge is low.

A charging station is commonly used for continuous oper-
ation in household robotics [1], [2]. Such a station occupies
space and there always should be a clear path to it. A robot
in a large building might have to travel a long path to find
a free station to charge. Also, docking stations might fail to
provide an electrical connection if a robot is not positioned
properly when parking. A standard electrical outlet design is
much more robust, being tested by decades of usage. Outlets
are widely available in the most part of home and office
buildings. This allows a robot to travel less distance when
looking for an unobstructed path to an electrical connection.

The problem of plugging into a standard outlet is challeng-
ing for both perception and manipulation because it requires
accurate, submillimeter-scale positioning of the plug with
respect to the outlet. In the final step of the plug-in operation
a plug is close to an outlet and occludes a part of it, making
visual servoing difficult. There are several robots [3], [4] that
use electromagnetic sensor to localize outlet holes. Our goal
is to solve this problem using only a general-purpose vision
system.

The plugging in problem can be factored into estimating
coordinates and orientation of outlet holes with regard to the
robot using its cameras and moving the arm with the plug
into the corresponding position. This paper addresses the
perception part of the problem: how can we reliably detect
outlet holes and find their coordinates with submillimeter
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accuracy? We assume that the robot is already in front of the
outlet. [5] describes a farfield outlet detection using stereo
and template matching, helping to drive a robot close to an
outlet.

We use a local feature detector to find hole candidates
in a monocular image that contains an outlet. Some of the
false alarms are filtered out by one way descriptor [6] that is
trained on a single image of a different outlet. Then we use
geometric hashing [7] to select a subset of hole candidates
that will be considered an outlet. Once we have a hypothesis
about hole locations in the image, we can run a planar PnP
solver to reconstruct 3D locations of all points. However
since the outlet size is small (a distance between outlet power
holes is about 12 mm) while the distance from the outlet to
the camera is large (20-50 cm), the relative error of the pose
estimation will also be large.

In order to address this problem we introduce a new
algorithm for solving a planar PnP problem with a known
object normal. We define a different cost function that
minimizes the reprojection error in the object plane rather
than in the camera plane. It has a single minimum that can
be found in closed-form and is more stable against noise in
point coordinates. Planar PnP problem needs 4 non-collinear
points while our method gives a unique solution with only
2 points.

II. RELATED WORK

There are several approaches for detecting frontal view
outlets in images. [8] uses Viola-Jones cascade detector [9],
while [10], [11] rely on template matching. [5] describes an
algorithm for detecting a block of 2x2 orange outlets using
color blob detection. The technique showed good detection
accuracy with varying viewangle and lighting conditions.
Pose estimation was done by a PnP solver in OpenCV [12]
that uses Levenberg-Marquardt optimization. Since the pose
was calculated from only 4 points (centers of orange blobs),
the results were not stable enough and iterative random
search was employed for a successful plugging in.

Recently there was quite a progress in detecting textured
objects. A number of feature detectors (SIFT [13], SURF
[14], MSER [15], FAST [16], [17]) and descriptors [13],
[14], [18] are used to build a generic textured object de-
tection engine using a monocular camera [19], [20], [21].
Descriptors are used to find candidate object features in a test
image. Then a geometrically consistent subset of features is
found to filter out false alarms. [22], [23] use histograms of
intensity gradients to detect untextured objects.

There is quite a lot of work on PnP problem solvers,
both closed-form and iterative [24], [25], [26], [27], [28].



For a planar object, it is possible to calculate the pose from
the homography between object and image planes (see, for
instance, [29]). There are quite a few algorithms specially
designed for planar objects [30], some of the general-purpose
methods consider planar PnP as a special case [24]. However,
since few points are available for fitting (6 holes for a block
of 2 outlets), such methods will be sensitive to noise. So, any
prior information will be crucial at this step. The authors are
not aware of any attempts to use an object normal as a prior
in a planar PnP solution.

We want to develop a technique that robustly detects
outlets from different viewpoints and in different lighting
conditions. Template matching is not stable to variations
in lighting and cascade detector fails with a change in
viewpoint. Our algorithm follows ideas of [13], combining
local feature matching with geometrical validation. The next
section describes the algorithm for detecting outlet holes in
an image. Then we describe our approach to pose estimation
and conclude by talking about the Continuous Operation
project.

III. OUTLET DETECTION

We assume that the robot has already positioned itself
near an outlet using the approach outlined in [5]. In order
to plugin, we need to detect outlet holes and find their 3D
positions. Detection is based on a single image taken by a
camera that is 20− 50cm away from the outlet. In order to
be robust we detect a block of several outlets with a known
3D structure, such as shown in Figure 1a. The detection
algorithm consists of several steps: finding the candidate
holes, classifying each of them using their likelihood to the
holes of a previously captured outlet, and finally finding a
geometrically consistent combination of holes. Each of these
steps is covered by the following subsections.

A. Hole detection

The goal of this step is to find pixels whose local regions
look like outlet holes. We want the detector to work with
100% detection rate and an acceptable false alarm rate. That
is, if there is an outlet in an image, every outlet hole should
be detected, at the expense of also returning locations that are
not outlet holes. We look for any small dark areas surrounded
by larger brighter areas. Due to shadows and glossy surfaces
outlet hole appearance can change a lot with a viewangle.
We have designed a feature detector specifically for this task.
Other detectors such as [14], [15] or multiscale FAST [16]
are also acceptable to be used here but our experiments
showed them to give worse performance on this specific
problem.

The algorithm for detecting outlet holes is based on finding
small connected components after thresholding an image on
different levels (we use threshold values from 30 to 150 with
step 20 for a greyscale image). For each component C we
need to check if it is surrounded by a brighter area. We do
this by comparing the intensity in the geometrical center p0

of C with intensities in four pixels around C: p1,2 ± sxx0

and p3,4 ± syy0, where sx and sy are the width and height

of the bounding rectangle for the component C, x0,y0 are
vectors along the horizontal and vertical axes with the length
equal to 1 pixel (see Fig 1b). The contrast is defined as

rC =

∑
i=1..4

I(pi)

4I(p0)
, (1)

where I(p) is intensity in pixel p. rC is compared with a
constant threshold (equal to 1.5 for the all of the experi-
ments).

(a) (b)
Fig. 1. (a): Outlet (2x1) training image used for Continuous Operation
project. (b): Fast estimation of local contrast. The intensity in the central
pixel p0 is compared with the average of intensities in p1..4 (1).

B. Classification

Given the detected features, we classify them into three
different classes: power holes, ground holes and background.
Since the regions around the holes do not have any texture,
the best method is intensity-based (as opposed to gradient-
based methods such as SIFT and Haar-based SURF descrip-
tor). We use one way descriptor [6] that takes each training
patch and creates a set of its affine distortions simulating
viewpoint variation. We run affine distortions on 24x24
pixels patches around each hole in the training set, then crop
the center area of 12x12 pixels. In both operations we work
in 100-dimensional PCA space.

The training set consists of a single image of an outlet
with power and ground holes manually labeled, and a single
background image. Figure 1a shows the outlet training image
used for the Continuous Operation project. For each hole
candidate from a test image we crop a 12x12 pixels area
around it, and find the nearest neighbor among all affine
distorted patches in the training set using Euclidean distance
in the PCA space. A test feature is assigned the class of
its corresponding nearest neighbor. In order to account for
different sizes of train and test outlets, we run the algorithm
on scaled test images. For PR2 plugin we use scales from 0.5
up to 2 with a multiplicative step equal to 1.15. Examples
of classified hole candidates are available in Figure 2.

C. Geometric filtering

The final step in the detection algorithm is to select a
geometrically consistent set of hole candidates. If hi are
pixel coordinates of test features and tj – of labeled holes



Fig. 2. One way descriptor results. Blue circles correspond to holes
classified as ground, yellow – as power, green – non-hole features from
training outlet image, red – background. The left column contains images
of 2x1 outlets, the right – 2x2.

in the training image, we can define a score for each affine
transform A from training to test image:

S =
∑
j

δ (∃i||tj − hi| < MaxDist ∧ c(tj) = c(hi)) .

(2)
Here δ(x) = 1 if x is true, 0 otherwise, c() is feature class.
We look for an affine transform that has a score higher than a
threshold Smax. For 2x1 outlets used in continuous operation
we use Smax = 4, that is, we need to find a geometrically
consistent solution with 4 holes out of 6, correctly classified
by one way descriptor.

We restrict ourselves to a class of affine transformations
that map 3 points from the training set exactly into 3 points in
the test set. Geometric hashing [7] is used to make the search
fast. We construct a hash table by considering all ordered
combinations of 3 labeled points tj in a training set. Each
combination corresponds to a 2-dimensional affine basis with
the origin o in the first point and two base vectors a, b
directed from the origin to the other two points. An arbitrary
point in the training set can be represented as tj = pja+qjb.
We discretize the space of coefficients pj , qj , building a hash
table and assigning an integer list to each of the table bins.
For each point tj generating a pair {pj , qj} that falls into a
specific hash bin, we add the current basis index to the list
of this bin. We repeat this for each basis and for each point
in the training set.

During the online stage, we construct bases from triples of
test features and use the hash table to find possible matches
from the training set. We iterate through all test features.
For each of them, we randomly select two more features
in the proximity of the current one. If the selected points
are almost collinear, we discard the triplet and repeat the
selection procedure again. For a selected triple, we build a
basis and represent each point as a linear combination of its
vectors. Thus we can map each test point to a hash bin and
count the number of times we meet each of the training bases
in it. These counts are accumulated for all test points, each
count being the measure of how likely is the representation of
test points in the test basis and training points in the training
basis. A pair of training and test bases generates a unique
affine transform A. We calculate the score (2) for each of the
training bases that get the count higher than a threshold. A
solution with the maximum score is returned, if the score is
higher than Smax. Otherwise we conclude there is no outlet
in the test image.

IV. EXPERIMENTAL RESULTS

Our training dataset consists of a single image of an outlet,
a single background image and 3D coordinates of each outlet
hole with one of the holes in the origin. Therefore, we use
different training sets for 2x1 and 2x2 outlets and we know
in advance what structure we are looking for. Obviously this
condition can be relaxed by subsequent application of the
detection with different training sets if the number of false
alarms for each of the structures is sufficiently low. Figure 3
contains examples of images from the test dataset. Detection
time varies from 0.15s to 1s for 2x1 outlets and from 0.4s
up to 4s for 2x2 outlets. The most of the time is spent on
classifying holes on different scales.

We test outlet detection on a dataset that consists of 3
different 2x1 and 4 2x2 outlets. Each image consists of
exactly one outlet. We know coordinates of each hole and we
consider the detection successful if the detected position is
off from the ground truth by less than 5 pixels. The detection
function either returns exactly one solution or no solution,
so the quality is estimated with the correct detections count
and false alarms count. We give absolute numbers of both
since the number of test samples in each dataset is relatively
low.

Dataset # images # detections # false alarms
fw 2x1white 111 88 0
orange2x1 103 94 0

whitehall2x1 103 100 0
cracked2x2 100 91 0

fw 2x2orange 34 33 0
specular2x2 56 21 0

white2x2 104 97 0

TABLE I
OUTLET DETECTION RESULTS.

Table I contains the detection results for all datasets. The
algorithm is tuned so that it misses some of the objects
but has almost no false alarms. It is important from the



fw 2x1white orange2x1

whitehall2x1 cracked2x2

specular2x2 white2x2
Fig. 3. Examples of images from test datasets.

application point of view: we rather change camera position
to try detection on another viewpoint than provide a robot
arm with wrong coordinates. The most of the failures are
on side views of outlets and are due to misclassification of
outlet holes. For PR2 plugging in, we try to position the
camera exactly in front of the outlet so that the detection
is more stable. Note that a single template is used for
detecting outlets of different color. This is because all steps
of the algorithm are invariant to linear scaling of pixel
intensities. specular2x2 dataset contains the most challenging
examples of outlet images: strong shadows, oversaturated
or dark images. This explains relatively low detection rate.
Figure 4 shows some of the successful detections in these
challenging conditions. The test dataset is available from
[31], the code for running detection on this data is in ROS
package outlet test [32].

V. POSE ESTIMATION

Estimation of 3D positions of outlet holes from a monoc-
ular image is a hard problem. The outlet is a planar object
so the problem can be formulated as a planar PnP, where the
cost function is defined as a reprojection error to the camera
plane. However, if the object linear size is much smaller
than the distance to the camera, then a large variation in
object pose will cause a small variation in the reprojection
error. Moreover, for an object that is symmetric such as a
2x1 outlet, there are going to be 2 solutions corresponding
to different poses.

In order to address these issues, we introduce a hard
constraint on the outlet orientation coming from 3D sensors
such as stereo camera or lidar that estimate wall normal.
Also, we redefine a pose estimation cost function: instead

Fig. 4. Examples of challenging detections. The left column contains output
of one way descriptor. The right column contains detection results.

of minimizing the reprojection error in the camera plane,
we minimize the reprojection error in the object plane. This
function is more sensitive to changes in object pose although
we still get a significant error from hole coordinates in the
image plane. Also, it appears that we can minimize the
reprojection error inside the object plane in closed form.

Let us consider a set of m points {p0
i ∈ R3} in an

arbitrary reference frame, all lying in the same plane. An
unknown orthogonal transformation described by a rotation
matrix R and a translation vector T is applied to bring
the points into the camera reference frame. The points after
transformation will be denoted as {pi ∈ R3}. We observe
the projections ki ∈ R3 of pi into the camera plane. Our goal
is to recover R and T given {p0

i }, {ki} and the normal n
of the outlet plane in the camera reference frame.

Since all pi lie in the same plane, they can be represented
as

p0
i = αia

0 + βib
0, (3)

where a0,b0 ∈ R3, a0 and b0 define an orthonormal basis
in object plane. Without loss of generality we can assume
that object mass center is in the origin so that∑

i

αi =
∑
i

βi = 0. (4)

The coordinates of the same point set after an unknown
transformation into the camera reference frame can be ex-



pressed as
pi = αia+ βib+T, (5)

where |a| = |b| = 1, a ⊥ b.
We observe projections of pi into the camera plane

{ki ∈ R3}. All ki lie in the camera plane, so that without
observational errors pi should lie on the rays going from
origin through ki, so that there exists ti such that pi = kiti.
In reality there is a considerably large error in measuring
ki coming from image processing so that the last equation
cannot be fulfilled. A traditional approach to this problem
is to minimize the distance between projections of pi into
camera plane and the corresponding ki, with respect to R
and T. We suggest a different cost function that measures
the distance between pi and projections of ki into the object
plane. We define object plane by the equation n · p = d (·
denoting scalar product), so that a projection of ki into the
object plane can be expressed as

ri =
kid

ki · n
, (6)

where n is the object normal (provided by stereo or lidar
measurements) and d is the distance from the origin to the
object plane. Note that since the object is planar, its mass
center is also in the same plane and

d = n ·T. (7)

We define the cost function as

f(a,b,T) =
∑
i

‖pi − ri‖2 . (8)

The pose estimation problem is reduced to finding the
minimum of f with respect to the following constraints:

a · b = a · n = b · n = 0
|a| = |b| = 1

(9)

It is easy to show that f has a single minimum that can
be found in closed form. Let us find all argument values that
make all partial derivaties of f on its arguments equal to
zero. We will start with the translation vector:

∂f
∂T = 2

∑
i

(pi − ri)+

n
∑
i

(pi − ri) · ki

ki·n = 0,
(10)

Proposition 1. The only solution for equation (10) satisfies
the following:

T =
1

m

∑
i

ri. (11)

Proof. First, let us note that if we take a scalar product
of both sides of (11) with n and use (6), we get an identity.
Then, if we take a cross product of both sides of (10) with
n and use (5), (4), we obtain

n×T = n× 1

m

∑
i

ri, (12)

This proves the proposition.

Equation (11) defines T up to a scale:

T =
1

m

∑
i

ki (n ·T)

ki · n
. (13)

We note that using (11) and (9) we can prove∑
i

(pi − ri) · n = 0, (14)

Then an equation for scale can be obtained by taking a scalar
product of both sides of (10) with n:

d =

∑
i

(αia+ βib) · ki

ki·n∑
i

qi · ki

ki·n
, (15)

where qi =
ki

ki·n −
1
m

∑
j

kj

kj ·n .

We see that if a and b are defined, the last equation gives
a unique solution for d. Now, with the constraints (9), all
possible solutions are reduced to a rotation around an axis
going through object mass center T parallel to n. Let us
choose an arbitrary basis in the object plane ap,bp. For
example, ap = n × x0, bp = n × ap, where x0 is a unit
vector parallel to x axis in the image plane. Then pi can be
expressed with the new basis:

pi = (αi cos(φ) + βi sin(φ))a
p+

(−αi sin(φ) + βi cos(φ))b
p +T,

(16)

where φ is the angle between ap and a. Then we can find
the optimal value of φ. It is easy to see, using (9), that

∂f
∂φ = 2d

∑
i

(qib
pαi − qia

pβi) cos(φ)+

(qib
pβi + qia

pαi) sin(φ) = 0.
(17)

This equation gives us two solutions for φ that differ by
π. If d is positive for one of these solutions, then it is
negative for another, since both a and b change direction to
the opposite (see (15)). This gives us a closed-form solution
for the minimum point of f with regard to T and φ.

VI. CONTINUOUS OPERATION

For robots to be useful in real-world environments, it is
necessary for them to be capable of performing tasks over
long periods of time. The ability for a robot to recharge
itself is critical to achieve autonomy that lasts longer than a
single battery charge. Based on the PR2 robot, we build a
robust platform to execute long term autonomous tasks in an
office environment, such as mail delivery, cleanup or security
monitoring. The base platform has two basic capabilities:
autonomous navigation and recharging. We stress test this
platform by commanding the PR2 to continuously navigate
to randomly chosen locations in the environment. When
the battery level runs low, the PR2 navigates to one of
three designated recharging locations and plugs itself into a
standard 2x1 outlet. While this experiment ran for multiple
months, the longest continuous run lasted for 13 days and
covered a distance of 138.9 km. In this run the robot had
to recharge itself over 100 times. Recharging is triggered
at a battery level of 35%, giving the robot 15-20 minutes to



navigate to an outlet and plug itself in, before its batteries run
out. When plugging in fails, the robot navigates to a different
recharging location to try plugging in again. In practice this
means the plugging in task can only fail 1-2 times before the
robot dies. During the 13 day continuous run, only 5% of the
recharging attempts failed, and 60% of those failures were
caused by obstacles in the recharging location. This means
the insertion of the plug into the outlet succeeded 98% of the
time. Taking into account retries, the plugging in task never
caused the robot to run out of battery power during the 13
days run. The code for outlet detection and pose estimation
used for Continuous Operation project is available in ROS
package outlet pose estimation [33]

VII. CONCLUSION

We have shown that a video camera can be used to
detect outlets in close range with few false alarms. The
detection algorithm works for outlets of different structure
and color and is robust against shadows, oversaturated and
dark images. We have also presented an algorithm for finding
the outlet holes pose with high accuracy by using the wall
normal obtained from stereo data. An experiment with PR2
showed that the system is robust enough to be used for robot
continuous operation. .
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