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This paper describes “Little Ben,” an autonomous ground vehicle constructed by the Ben
Franklin Racing Team for the 2007 DARPA Urban Challenge in under a year and for less
than $250,000. The sensing, planning, navigation, and actuation systems for Little Ben
were carefully designed to meet the performance demands required of an autonomous
vehicle traveling in an uncertain urban environment. We incorporated an array of a global
positioning system (GPS)/inertial navigation system, LIDARs, and stereo cameras to pro-
vide timely information about the surrounding environment at the appropriate ranges.
This sensor information was integrated into a dynamic map that could robustly handle
GPS dropouts and errors. Our planning algorithms consisted of a high-level mission plan-
ner that used information from the provided route network definition and mission data
files to select routes, whereas the lower level planner used the latest dynamic map infor-
mation to optimize a feasible trajectory to the next waypoint. The vehicle was actuated by
a cost-based controller that efficiently handled steering, throttle, and braking maneuvers
in both forward and reverse directions. Our software modules were integrated within a
hierarchical architecture that allowed rapid development and testing of the system per-
formance. The resulting vehicle was one of six to successfully finish the Urban Challenge.
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1. INTRODUCTION

The goal of the 2007 DARPA Urban Challenge was to
build an autonomous ground vehicle that could exe-
cute a simulated military supply mission safely and
effectively in a mock urban area. Compared with pre-
vious DARPA Grand Challenges, this particular chal-
lenge necessitated that robot vehicles perform au-
tonomous maneuvers safely in traffic (DARPA, 2007).
To address this challenge, the Ben Franklin Racing
Team was formed by students and faculty at the
University of Pennsylvania and Lehigh University
and engineers at Lockheed Martin Advanced Tech-
nology Laboratory. In under a year and with a limited
budget, the Ben Franklin Racing Team was able to
construct “Little Ben,” a drive-by-wire Toyota Prius
with an array of onboard sensors and computers
shown in Figure 1.

The Urban Challenge presented unique chal-
lenges to autonomous sensing, navigation, and con-
trol. Some of the scenarios that our vehicle needed to
be able to handle included the following:

• Maintain appropriate safety margins at all
times

Figure 1. Little Ben is a Toyota Prius hybrid vehicle modified for drive-by-wire operation with an onboard array of sensors
and computers.

• Accurately follow a lane within prescribed
lane boundaries

• Detect and avoid moving traffic
• Stop and drive into a new lane in the presence

of other vehicles
• Park in constrained spaces in dynamic

environments

These situations required that obstacles and lane
markings be detected at a distance and that the ve-
hicle react quickly and appropriately while following
the local traffic laws and conventions. An overarch-
ing requirement was that a successful system adhere
to a stringent set of real-time processing constraints
in its detection and reaction to its environment. This
was reflected mainly in the system reaction time, as
governed by the processing sample rate. Low sam-
ple rates increase the distance at which obstacles and
other traffic vehicles must be detected for safe op-
eration. Conversely, high sample rates are attainable
only by using overly simplified sensing and control
algorithms.

The design of our vehicle’s hardware and soft-
ware systems was predicated on achieving a reaction
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Figure 2. Required detection distance at various speeds
taking into account worst-case latencies in system process-
ing time.

time that ensured safe operation of driving maneu-
vers at the mandated upper speed limit of 30 mph
(13.4 m/s). As an example of our design methodol-
ogy, Figure 2 shows our calculation of the required
detection distance of another vehicle in order for our
vehicle to properly react and stop at various relative
speeds up to 60 mph (26.8 m/s). In our calculations,
we required that at least one vehicle length of sep-
aration be maintained at the end of the maneuver.
We have also identified the maximum braking accel-
eration that can be introduced in this speed range
without triggering the antilock brake system (ABS).
Therefore, the ABS reaction dynamics were reserved
as an additional safety margin when dry pavement
conditions were not present.

We evaluated a range of possible system sample
rates and selected 10 Hz as the desired system pro-
cessing rate. Our calculations in Figure 2 took into
account a two-sample-period delay (200 ms) as the
worst-case scenario for detection and reaction; the
first sample period could elapse just before an ob-
stacle crossed the sensor detection threshold, and the
second sample period was assumed to be used for the
necessary computational processing.

The hardware and software systems were se-
lected to meet the desired detection distance and
processing time objectives. Sensors and their respec-
tive mounting positions were chosen to maximize
their long-range detection characteristics. Drive-by-
wire actuation and computer hardware systems were

selected to minimize processing latencies. Similarly,
our software modules were also optimized to max-
imize detection distance and minimize processing
delays. This combination of hardware sensing sys-
tems with efficient, reactive software modules al-
lowed Little Ben to achieve the requisite safety
margins for driving in urban traffic situations.

2. VEHICLE PLATFORM

Little Ben was built from a 2006 Toyota Prius hy-
brid vehicle with modified controls to allow drive-by-
wire as well as manual operation. Because the Urban
Challenge took place in a mostly urban setting, there
was no need for a large off-road vehicle. The Prius’s
compact size made many driving maneuvers easier
to accomplish than by other larger vehicles and also
proved to be very stable, reliable, and easy to work
with.

Unlike most standard automobiles, Little Ben did
not have an alternator. Instead it used power pro-
vided by the built-in 200-V hybrid battery via a dc–
dc converter to power all standard 12-V vehicle com-
ponents as well as the additional hardware that we
installed. As shown in Table I, the total peak power
consumption of the additional hardware systems was
less than 700 W peak, well below the maximum 1-kW
power output of the stock dc–dc converter. Thus, Lit-
tle Ben did not require any specialized alternators or
additional generators or cooling hardware. This over-
all power and fuel efficiency enabled Little Ben to fin-
ish the 57 miles (92 km) of the Urban Challenge using
only about 1 gallon (3.8 liters) of gasoline.

Table I. Power consumption of sensors, computers, and
vehicle actuation on Little Ben.

Device Peak power consumption (W)

EMC (drive-by-wire) 150
3 SICK LMS-291 60
2 SICK LDLRS 60
1 Velodyne 60
7 Mac Minis 250
3 Hokuyo URG-04LX 15
1 OxTS Pose System 10
2 serial device servers 5
Ethernet switches, router 5

Total peak power ∼650
Actual steady state ∼450
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Figure 3. Components that interface to the drive-by-wire system.

2.1. Drive-by-Wire Actuation

As depicted in Figure 3, the drive-by-wire vehi-
cle actuation was performed by Electronic Mobility
Controls (EMC) of Baton Rouge, Louisiana. This con-
version included dc servomotors to actuate the steer-
ing wheel and gas/brake pedals, along with triple-
redundant motor controllers to ensure safe operation.
Two analog dc voltage inputs were provided by EMC
to control the steering wheel and gas/brake pedal
position. To transmit the digital control signal from
the computers to the drive-by-wire system, we im-
plemented a very simple digital-to-analog converter
using a cheap digital programmable integrated cir-
cuit (PIC) microcontroller with a resistor-capacitor
(RC)-filtered pulse-width modulation (PWM) output.
Given that the drive-by-wire analog signals were
sampled at 100 Hz, the RC time constant of the filter
was chosen to be approximately 10 ms. This en-
sured that the full actuation bandwidth was pre-
served while smoothing any electrical noise interfer-

ence in the vehicle. The PWM frequency of the mi-
crocontroller was set to 20 kHz with 8-bit resolution,
which was sufficient for smooth and accurate control
of the actuators.

Other vehicle controls such as transmission shift-
ing, turn signals, and parking brake were interfaced
via a single RS-232 connection to EMC’s secondary
controller unit. Additionally, we installed a CAN bus
interface to the Toyota onboard diagnostic (OBD)
connector in order to verify vehicle state information
directly from the car’s electronic control unit (ECU).
The CAN interface provided accurate brake pedal po-
sition at 100 Hz, steering encoder feedback at 70 Hz,
and other vehicle state information such as transmis-
sion shift setting at slightly lower rates.

2.2. Emergency Stop

Because safety is a top priority with autonomous ve-
hicles, we took major steps toward minimizing the

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Block diagram depicting the emergency stop and safety systems incorporated into the vehicle.

risk of injury or damage due to undesired behavior
of the vehicle. The emergency stop system was de-
signed to make human intervention safe, quick, and
reliable. To achieve fail-safe operation, redundancy
was incorporated on multiple levels using watchdog
timers and heartbeat monitors as shown in Figure 4.

When the “pause” mode was activated, either
by a human operator or when the radio-controlled
transmitter was out of range, the throttle commands
from the computers were automatically overridden
and the brake was applied at near-maximum brak-
ing acceleration to ensure smooth stopping within the
allowed distance. In this mode, the computers were
unable to drive the vehicle unless the “run” com-
mand was explicitly given. After the run command
was given, the audible and visual strobe warning de-
vices were activated, and control was returned to the
computer systems after a 5-s delay.

Our “disable” mode was an extension of the
pause mode. In addition to braking the vehicle and
disabling computer control of the throttle, the E-stop
processor verified that the vehicle speed was zero
on the Toyota CAN bus and set the transmission to
park. All the Toyota Prius systems were then pow-
ered down. In this state, the vehicle would need to be
manually restarted in order to reactivate autonomous
control. The vehicle could easily be disabled via the
dedicated remote control or the manual E-stop but-
tons located on either side of the car.

To achieve high reliability, the most crucial com-
ponents of the safety system were implemented using
simple PIC microcontrollers and fail-safe mechanical
relays. These were powered using the backup battery

system of the EMC drive-by-wire system, so even
without vehicle power or computers, the car was
guaranteed to respond properly to pause and disable
commands.

2.3. Roof Rack

Because of constraints on our local storage facilities,
our primary sensor rack was designed such that it
could be quickly mounted and unmounted as a sin-
gle structure without having to recalibrate the sen-
sors. The stock beams from a Yakima roof rack were
replaced with aluminum pipes onto which an 80/20
aluminum structure was rigidly fixed. Once locked
into place, the sensor rack was connected to the ve-
hicle power and computing systems through a single
umbilical connector.

To maximize the detection range of our sensors,
the rack shown in Figure 5 was custom designed to al-
low optimal viewing angles for as many of these sen-
sors as possible. In particular, we designed the rack to
accommodate a Velodyne HD LIDAR to give the om-
nidirectional sensor a fully unoccluded 360-deg az-
imuthal view. By mounting the Velodyne 8 in. (20 cm)
above the rest of the sensor rack, we took advantage
of the full complement of elevation angles in the sen-
sor to provide a sensing range from 4 to 60 m around
the vehicle. Its lateral left-of-center position was also
optimized for navigating around obstacles on Amer-
ican roads.

The rack also integrated a set of forward- and
rear-facing SICK LMS-291 S14 LIDAR sensors. These
90-deg-field-of-view sensors were tilted downward

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. Roof sensor rack designed to provide optimal viewing angles.

in order to intersect the ground at approximately
6–7 m ahead of and behind the vehicle. In these posi-
tions, the SICK LIDARs were well within their range
limitations and could provide for both ground plane,
obstacle and lane marking detection. These sensors
were also arranged so that they did not occlude the
Velodyne’s field of view and provided a complemen-
tary stream of range data.

The rack also contained the warning siren, strobe
lights, and mounting points for the global position-
ing system (GPS) antennas. Additionally, it provided
space for a weatherproof electronics enclosure. This
contained and protected the power distribution block
and connectors for sensors mounted on other parts of
the vehicle.

2.4. Hood Sensors

Little Ben also integrated several sensors that were
mounted on its hood. At the front center of the
hood was a vertical scanning SICK LMS-291 LIDAR,
as well as a high-resolution Point Grey Bumblebee
stereo camera as shown in Figure 6. The 1,024 × 768
resolution color camera had a horizontal 50-deg field
of view, with a frame rate of 15 Hz. To minimize the
potential for image blooming caused by sunlight, the
camera was pitched down 15 deg to minimize the
field of view over the horizon. A visor was also in-
tegrated as a further level of protection.

In addition, two SICK LD-LRS LIDAR scanners
were mounted parallel to the road surface at the front
left and front right corners of the hood. These scan-
ners provided overlapping 270-deg fields of coverage
and were used to detect obstacles and track moving
vehicles in front and at the sides of Little Ben. The
LD-LRS sensors employed a scanning frequency of

10 Hz, reporting laser returns at 0.5-deg increments.
Owing to their vulnerable position and possible mis-
alignment in the event of a crash, a simple cardboard
fiducial marker was attached to the hood and used
to automatically verify correct operation of these
sensors.

2.5. Other Sensors

Three compact Hokuyo URG-04LX LIDAR scanners
were also used to cover blind spots in sensor cov-
erage at short range around the vehicle as shown
in Figure 7. Although these sensors were rated only
for indoor use, through experimentation we found
that they could be used in outdoor conditions as
long as they were properly shielded from water
and from light in the back. Two Hokuyo scanners
were mounted underneath the side mirrors for de-
tecting obstacles such as curbs at the sides of the
front wheels, as well as nearby lane markings on the

Figure 6. Sensors mounted on the hood of Little Ben.
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Figure 7. Additional Hokuyo scanners used to eliminate
blind spots at short range.

ground. The third sensor was mounted slightly above
the rear bumper and allowed for accurate maneuver-
ing between tightly spaced obstacles while in reverse.

3. SOFTWARE ARCHITECTURE

As depicted in Figure 8, the software architecture
was divided hierarchically into a series of modules,
connected via interprocess communication messages.
At the lowest level was the driving module, which
was responsible for interfacing to the vehicle con-
troller hardware and verifying correct operation of
the steering, throttle, braking, and transmission. Also
present at this low level was the pose software mod-
ule, which integrated readings from the GPS and in-
ertial navigation system (INS) to provide the latest
pose information at 100 Hz. These two hardware in-
terface modules could be readily replaced by a sim-
ulation module, which allowed us to rapidly test the
software without requiring the processes to be physi-
cally connected to the vehicle systems.

At the highest level, the mission planning mod-
ule read the appropriate route network definition
file (RNDF) and mission data file (MDF) to deter-
mine the optimal sequencing of waypoints needed
to complete the mission objectives. Next were the
sensor modules, which gathered data from all the
LIDARs and the stereo camera to provide proba-
bilistic real-time estimates of the terrain, road mark-
ings, and static and dynamic obstacles. These mod-

Figure 8. Software architecture showing system modules
and corresponding interprocess communication messages.

ules consolidated the large amount of sensor data
into a compact representation in the vehicle’s local
reference frame before sending this information onto
the MapPlan process.

The MapPlan process was then responsible for in-
tegrating all the sensor information into a probabilis-
tic dynamic map and then computing the appropri-
ate vehicle path to reach the next desired waypoint as
determined by the high-level mission planner. It also
checked to ensure that this path avoided all known
obstacles while obeying vehicle dynamic constraints
as well as local traffic rules. The PathFollow module
took the desired vehicle path from the MapPlan pro-
cess and generated the optimal steering, throttle, and
braking commands needed by the low-level driving
module.

All the processes communicated with each other
via well-defined message formats sent through the
Spread messaging toolkit (Amir, Danilov, Miskin-
Amir, Schultz, & Stanton, 2004). This open-source
messaging system provided message reliability in the
presence of machine failures and process crashes,
while maintaining low latencies across the network.
It also enabled convenient logging of these messages
with appropriate time stamps. These logs allowed us
to rapidly identify and debug bad processes, as well
as replay logged messages for diagnostic purposes.

Journal of Field Robotics DOI 10.1002/rob
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These modules were written mainly in Mat-
lab with some ancillary C++ routines. The use of
high-level Matlab enabled the software system to be
written in fewer than 5,000 lines of code. We also
implemented a development environment that incor-
porated Subversion for source code tracking, Bugzilla
for assigning tasks, and a Wiki for writing documen-
tation. All the documentation was readily accessible
to the whole team with convenient search functional-
ity to allow easy collaboration. During field testing,
local copies of the Bugzilla and source code repos-
itory were stored within the vehicle to allow us to
make offline changes that were merged with our cen-
tral servers after testing. With these tools, rapid pro-
totyping and development was accomplished by the
team both in the laboratory and in the field.

All the software processes were run on a small
computer cluster, consisting of seven Mac Minis with
Core 2 Duo processors running Ubuntu Linux. The
computers were interconnected through a gigabit
Ethernet network in the vehicle trunk as shown in
Figure 9. Serial connections to the vehicle’s low-
level hardware and sensors were also provided
over the Ethernet network via Comtrol serial device
servers. In the event of a computer failure, our sys-

tem automatically switched the affected processes
over to a redundant computing node without hav-
ing to manually reconfigure any connections. Special
monitoring software (monit) was used to constantly
check the status of all the computers and processes to
detect software crashes and other possible failures.

To prevent the various data streams from in-
terfering with one another, Little Ben contained
three separate subnetworks isolated using hardware
routers and switches. The first subnet was used for
normal interprocess communications between the
Mac Minis. The second subnet was used to isolate
the various LIDAR sensors: it was found that some
of the SICK sensors contained buggy network proto-
col implementations and would lock up in the pres-
ence of extraneous Ethernet traffic. Finally, the third
subnetwork was used to isolate the large amounts of
data broadcast by the Velodyne LIDAR sensor (ap-
proximately 3 MB/s); only those computers process-
ing this data stream would subscribe to this subnet.

4. PERCEPTION

Little Ben’s perception system was responsible for
providing information about the locations of static

Figure 9. Computing and networking systems onboard Little Ben.
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obstacles, traversable ground, moving vehicles, and
lane markings on the road. This processing was per-
formed in a highly redundant manner by the vari-
ous sensors on the vehicle: Velodyne LIDAR, SICK
LIDARs, Hokuyo LIDARs, and Bumblebee stereo
camera.

4.1. Velodyne Processing

The Velodyne HDL-64E LIDAR was Little Ben’s pri-
mary medium-to-long-range sensor. It was used for
geometric obstacle/ground classification and road
marking extraction, as well as dynamic obstacle ve-
locity tracking. The Velodyne houses 64 905-nm lasers
and can spin between 5 and 15 Hz, yielding a field of
view of 360-deg azimuth and −24- to +2-deg zenith.
We configured the sensor to spin at 10 Hz in order
to acquire a high point density and capture frames at
the same rate as our control system. A sample scan is
shown in Figure 10.

Although we were supplied with the factory
horizontal and vertical correction factors, we found
that the individual lasers required an additional
distance offset that we calibrated using comparisons
to the readings from the SICK LMS-291 sensors.
Even with this extra calibration, we found that our

particular Velodyne sensor would sometimes report
laser ranges with uncertainties on the order of 30 cm,
much larger than the stated 5-cm accuracy. Because
of this large uncertainty, it was necessary to process
the Velodyne data as 64 independent scans, rather
than aggregating returns between different lasers.

Some of the individual lasers would also sporad-
ically return large noisy outliers. Because of this, the
range and reflectivity values from each laser were
carefully monitored online and rejected if any in-
consistent outliers were detected. Classifications of
ground versus obstacle were also never based on a
single return but on the statistics of a consecutive set
of four to five points.

In this manner, we were able to classify reflective
obstacles such as other vehicles out to 60 m and de-
tect ground points out to 30 m under good conditions,
depending on the reflectivity of the ground. The re-
flectivity data were also used to detect lane markings
during the Urban Challenge within a range of 15 m.

4.2. LIDAR Ground/Obstacle Detection

The range scans from the downward-angled LIDARs,
SICK LMS-291s and side-mounted Hokuyos, were
processed in the following manner. In the first phase

Figure 10. Three-dimensional point cloud from a single Velodyne scan classified as ground and obstacle.
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Figure 11. Robust ground plane extraction and ground/obstacle classification from the front- and rear-facing SICK
LMS-291 sensors.

of the algorithm, a ground plane was fitted in a robust
fashion to the observed points. The range values from
a scan were first passed through a median filter to re-
move spurious returns due to airborne dust particles,
rain, etc. Then given the observed Cartesian points
from the filtered LIDAR scan, (xi , zi), we minimized
the following objective:

min
m,b

∑
i

f (zi − mxi − b), (1)

where f was an error measure that was quadratic
near zero but decreased much more slowly for larger
values. This minimization was performed in an
incremental fashion using interative least squares
(Guitton, 2000).

To improve the robustness of the ground plane
fit, we also employed regularization of the ground
plane parameters based on the relative geometry of
the vehicle and sensor calibration. This enabled our
algorithm to accurately track the ground as shown
in Figure 11, even in the presence of significant pitch
changes as well as highly linear obstacle features.

Once an accurate ground plane had been deter-
mined, it was relatively easy to classify the various
observed scan points as obstacle or ground based on
their deviation to the ground plane. Another example
of this classification is shown in detecting a nearby
curb from a side-mounted Hokuyo scanner as shown
in Figure 12.

4.3. LIDAR Lane Marking Detection

In addition to streaming range information, the
Velodyne, SICK LMS-291-S14, and Hokuyo LIDARs
also returned corresponding reflectivity values. This
information was used for detecting and identifying
lane markers in order to compensate for any posi-
tional shifts in our pose system.

To detect lane markings from the LIDAR returns,
the reflectivity readings of identified ground points
were first analyzed. Sections of ground whose re-
flectivity values were significantly higher than the
surrounding road surface were then identified as

Figure 12. Curb/ground detection from side-facing
Hokuyo LIDAR.
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Figure 13. Lane marking detection and identification from front SICK LMS-291.

potential markings. These sections were then checked
to see whether they corresponded to line widths be-
tween 10 and 15 cm wide. Figure 13 shows an exam-
ple of lane marking detection and identification from
the front-facing SICK LMS-291 sensor. The two peaks
correspond to the left and right lane markings present
in the lane.

4.4. Dynamic Obstacle Tracking

To successfully navigate through dynamic obstacles,
obstacle velocities as well as positions needed to be
accurately estimated. Budgetary and time constraints
precluded us from incorporating any type of RADAR
sensors, so Little Ben tracked dynamic obstacles us-
ing consecutive LIDAR returns from the Velodyne
sensor as well as consecutive returns from the hood-
mounted SICK LD-LRS scanners.

First, classified obstacle range returns were
grouped into local line features. The line features
were then tracked across consecutive scans using a
multiple-hypothesis Kalman filter. This filter rejected
spurious detections based on prior constraints on the
size and velocities of known obstacles.

Figure 14 shows the output of the algorithm
tracking two vehicles based on consecutive range

readings from one of the hood-mounted SICK LD-
LRS scanners. In this manner, moving obstacles
within a range of approximately 60 m could be
tracked with an accuracy of about 1 m/s.

4.5. Vision

The Bumblebee stereo vision system was also used
to recover road markings at ranges from 4 to 15 m
ahead of the vehicle. Constraining our interest to this
region yielded more robust feature segmentation and
more reliable stereo disparity estimates and allowed
a linear model to be used in reconstructing the lane
markings.

Images were processed at 512 × 384 resolution at
a rate of 15 frames per second, using approximately
50% of a single core of one of the Mac Mini proces-
sors. Figure 15 shows an example of the output of our
vision system in detecting and locating lane markings
relative to the vehicle.

Images from the stereo camera were first en-
hanced and then subtracted from corresponding
pixel-shifted locations in the left and right images.
The appropriate pixel shifts were determined by cali-
brating the camera relative to the ground plane. This
could also be done adaptively using the observed

Journal of Field Robotics DOI 10.1002/rob
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Figure 14. Vehicle heading and velocity tracking from
SICK LD-LRS sensor; Little Ben is located at the origin of
the figure.

stereo disparity values. Valid lane markings were
then detected using a variety of filters that test image
region candidates based on width, length, and area
constraints. Candidate lines were then projected onto
the road surface and placed into the map relative to
the current vehicle location.

5. MAPPING

Our previous experience with autonomous outdoor
navigation has underscored the need for robust map-
ping that is consistent with perceptual data as well as
prior information about the environment (Vernaza &
Lee, 2006). As the vehicle traversed its environment,
perceptual data were distilled into local occupancy
grid maps (Elfes, 1989). These maps were referenced
to the local coordinate system of the vehicle and re-
flected the state of the world as observed at a specific
instant in time.

As information about static obstacles, dynamic
obstacles, and lane markings was sent by the
perceptual modules, the MapPlan module updated
the various ground/obstacle and lane marking
likelihoods in a 300 × 300 m map, roughly centered at
the current vehicle location. The current vehicle pose
was obtained from an Oxford Technical Solutions RT-
3050 unit. The RT-3050 is a self-contained unit that
uses a Kalman filter–based algorithm to combine in-
ertial sensors, GPS updates with differential correc-
tions from the OmniStar VBS service, and vehicle
odometry information from the native embedded ve-
hicle systems (Kalman & Bucy, 1961). The RT-3050
was able to provide pose estimates at a high up-
date rate of 100 Hz with a stated accuracy of 0.5 m.
The unit was specifically designed for ground vehi-
cle testing applications and was capable of providing
pose estimates during periods of sustained GPS out-
ages or poor GPS performance due to environmental
effects such as multipath reflections.

Given the vehicle pose estimates, the various per-
ceptual measurements were fused into the current
map. Figure 16 shows a snapshot of the map shortly
after the beginning of the Urban Challenge, when

Figure 15. (Left) Camera image with segmented lanes; (center) corresponding disparity image; (right) reconstructed lane
relative to vehicle.

Journal of Field Robotics DOI 10.1002/rob
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Figure 16. Probabilistic map with obstacle/road (red/
blue) likelihoods along with lane markings (white) gener-
ated near the beginning of the Urban Challenge course.

Little Ben entered the two-lane loop. The walls and
road surface, as well as road markings, can be clearly
seen in this map.

6. PLANNING AND CONTROL

6.1. Mission and Path Planning

In our hierarchical software architecture, planning
was performed in two stages. At the highest level, the
mission planner estimated travel times between way-
points and then computed the optimal sequence of
waypoints to traverse in order to minimize the over-
all mission time. When a particular lane or intersec-
tion was blocked, the mission planner recomputed
an alternative sequence of waypoints using Dijkstra’s
algorithm to adaptively respond to traffic conditions
(Dijkstra, 1959). Figure 17 illustrates the display from
the mission planner as it monitors the progress of the
vehicle through a route network.

The next stage of planning incorporated informa-
tion from the dynamic map by computing a detailed
path to the next waypoint. Depending on the current
sequence and next waypoint type in the RNDF, a
specialized local planner that dealt with lane fol-
lowing, U-turns, intersections, and zones separately
was selected. The lane following planner optimized

Figure 17. Mission planner uses information from the
RNDF and MDF to plan optimal routes through the traffic
network.

a continuous set of lateral offsets from the path
given by the RNDF. The U-turn planner monitored
the road edges and obstacles while transitioning
between forward and reverse driving modes. On the
other hand, the intersection planner first monitored
the waiting time and other vehicle positions while
computing the optimal path through the intersection
box. Finally, the zone parking planner used a fast
nonholonomic path planner to find an optimal path
to the next waypoint in the zone. Each of these
planners computed the desired geometric path using
the current map costs and a maximum safe driving
speed by computed time to possible collisions from
the tracked dynamic obstacles.

6.2. Path Following

The path follower module was responsible for calcu-
lating the vehicle steering and throttle–brake actua-
tion commands required to follow the desired trajec-
tory as accurately as possible. The trajectory specified
the desired route as a set of points for which the spa-
tial position and the first and second derivatives were
defined.

Previous approaches to steering control for au-
tonomous car-like vehicles have used proportional–
integral–derivative (PID) control–based methods
with error terms that combine both the lateral and
heading offsets from the desired trajectory (Coulter,
1992; Rasmussen, Stewart, Burdick, & Murray, 2006;
Thrun et al., 2006). A weakness of these controllers in
this application is that they do not explicitly consider
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Figure 18. “Bicycle” model of the car dynamics used for
control.

the kinematic constraints of the vehicle when calcu-
lating the steering command. These controllers also
typically require significant reparameterization in or-
der to operate the vehicle in reverse.

To avoid these shortcomings, we developed an
alternative approach for steering control that inte-
grated the dynamics of a vehicle model (Figure 18)
to predict the resulting change in pose after a short
period of time under a set of possible steering com-
mands as shown in Figure 19 (Gillespie, 1992). A cost
function is then evaluated for each of the predicted
poses, and the steering command that minimized this
cost function was chosen.

As illustrated in Figure 20, the particular form
of the cost function used in our controller was as
follows:

C(φi) = E2
lateral +

[
Rθ sin

(
Eθi

2

)]2
, (2)

Figure 19. Estimated future vehicle poses for a set of pos-
sible steering commands in a simulated environment.

Figure 20. Graphical representation of the terms included
in the controller cost function.

where Elateral and Eθi
are the lateral and heading off-

sets of the vehicle relative to the target point on the
trajectory. Note that there is a length parameter Rθ

in the cost function that was used to scale the head-
ing error relative to the position error. This parame-
ter was adaptively tuned to maximize performance
in the different Urban Challenge scenarios.

The advantage of this value-based controller was
that it was quite robust to vehicle dynamics and could
be used just as effectively when the vehicle was oper-
ated in either reverse or forward. This allowed us to
accurately control the vehicle in situations requiring
tight navigation such as in lane changing or parking.

The speed of the vehicle was controlled by a
proportional-integral (PI) controller after lineariza-
tion of the throttle and brake dynamics. The con-
troller’s error term was the difference between the
desired speed set by the path planner and the current
speed as measured by the pose system.

6.3. Overhead Imagery Registration

We used the DARPA-provided overhead imagery to
aid in preprocessing the RNDF to yield a more pre-
cise description of the roadways. In particular, our
primary goal in processing the RNDF was to add a
heading to each lane point corresponding to the tan-
gent vector to the road at that point. These tangents
were then used to better plan smooth trajectories con-
necting pairs of waypoints. We did not artifically add
extra waypoints to “densify” the given RNDF.

Before this could be accomplished, we needed a
good estimate of the mapping from universal trans-
verse mercator (UTM) coordinates to image coor-
dinates in the overhead imagery. We found this
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transformation by fitting an affine model mapping
the UTM coordinates of the known corner points
to their known pixel locations. To refine this fit, we
found additional fiducial points to include in the re-
gression, in the form of the four surveyed points in
the team pits whose GPS coordinates were given by
DARPA. We deduced the image coordinates of these
points by measuring their real-world distances from
visible fiducials in the image.

7. NQE PERFORMANCE

Prior to the National Qualifying Event (NQE), a “Red
Team” was formed by engineers from Lockheed
Martin Advanced Technology Laboratory who were
not involved in the design and development of
Little Ben. This team came up with a series of eight
weekly tests at three different sites in the 2 months
before the NQE. These tests stressed various aspects
of autonomous driving as specified in the DARPA
guidelines. This independent validation gave the
team confidence in Little Ben’s abilities in unknown
environments during the NQE.

On the basis of its performance during the quali-
fying rounds, Little Ben was chosen as a finalist for
the Urban Challenge Final Event (UFE). However,
several significant refinements were made to both the
vehicle hardware and software prior to the UFE in
order to account for deficiencies identified during the
NQE test phase.

For example, prior to the NQE the dynamic ve-
hicle tracking described in Section 4.4 was performed
entirely by the Velodyne system. However, the merge
operation required in NQE Course A exposed sig-
nificant blind spots of the Velodyne due to occlu-
sions from road signage, as well as the large elec-
tronic speed monitor used by DARPA test vehicles for
speed management. This motivated the additional in-
tegration of the SICK LD-LRS hood-mounted units
for vehicle tracking. As the Velodyne was already
processed as 64 independent LIDAR instances, inte-
grating data from the two additional LD-LRS units
was relatively straightforward.

A second potential blind spot was identified dur-
ing the parking operation required in NQE Course B.
As part of this test, the vehicle was required to pull
straight into an open parking spot with parked cars
on both the left and right sides. Because the front of
the parking spot was also blocked by a third car, exit-
ing would require Little Ben to reverse out. However,
reversing was aggravated by the placement of a large

obstacle parallel to the row of cars. Whereas during
the NQE there was sufficient clearance for Little Ben
to exit without incident, a more severe test during
the UFE might result in losing sight of a low-height
obstacle. It was this requirement that motivated the
integration of the rear-bumper-mounted Hokuyo LI-
DAR described in Section 2.5. In fact, this sensor was
integrated the evening before the UFE! Although the
parking test during the UFE was in fact far simpler
than the NQE requirement, the ability to seamlessly
integrate another sensor only hours before the final
event—and with very limited testing—is itself a tes-
tament to the flexibility and modularity of our soft-
ware architecture.

One final observation from the NQE was re-
garding our approach to processing the LIDAR data.
Because Little Ben relied almost entirely on LIDAR
for exteroceptive sensing (no RADARs), we placed
significant emphasis on robust estimation and outlier
rejection. We observed other vehicles misclassify dust
clouds thrown up by their tires as phantom obstacles
and stop until these clouds dissipated. However, the
temporal filtering and spatial smoothness constraints
used with the SICK and Velodyne systems, respec-
tively, made Little Ben robust to such false positives.

8. UFE PERFORMANCE

On the basis of its performance during the NQE, Lit-
tle Ben was seeded fourth entering the UFE com-
petition. Overall, Ben’s performance during the fi-
nal event was quite good. The most significant
shortcoming during the 57-mile (92 km) race oc-
curred during the first mission of the UFE. This in-
volved the off-road portion of the course known
as “the Outback” that connected Montana Street
with Phantom Road East. During development, we
had operated exclusively on paved roads and ap-
proximately planar off-road surfaces. In contrast,
the Outback was a steep grade with dramatic
pitch changes over short distances. As a result, Lit-
tle Ben stalled at the bottom of the Outback as
it transitioned to Phantom Road East. Owing to
the extreme pitch of the dirt road at the requisite stop
line and low suspension and bumper clearance of
Little Ben, the paved road surface was nearly touch-
ing the front bumper at this point in the course. This
is shown in Figure 21. From this pose, the percep-
tual system interpreted the road surface as an obsta-
cle immediately in front of the vehicle and refused
to proceed through the intersection. By repositioning
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Figure 21. Little Ben temporarily stalled on the transition
from the Outback to Phantom Road East. The steep pitch
of the transition resulted in the road surface being falsely
classified as an obstacle.

Little Ben a few meters ahead, he was able to continue
through the remainder of the course.

Mission 1 also saw Little Ben execute what was
arguably the most intelligent maneuver of the UFE.
This occurred at a four-way intersection and required
Little Ben to interact with three other robot vehicles
and an even larger number of human-operated traffic

Figure 22. (Clockwise from upper left) Little Ben performs a right turn while passing a robot vehicle stopped in the wrong
lane.

vehicles, as shown in Figure 22. Little Ben (in dashed
box) arrived at the intersection with the UCF entry
temporarily stalled to the right and the MIT vehicle
stopped to the left (upper left). Little Ben obeyed in-
tersection precedence and waited for MIT and UCF to
proceed. The MIT vehicle made a right turn but then
became stopped temporarily against a curb. Upon
determining that the UCF vehicle was stalled, Lit-
tle Ben began his planned right turn (upper right).
Immediately, this brought Little Ben face to face with
the Cornell vehicle, which had stopped temporarily
in the wrong lane while attempting to pass other traf-
fic (lower right). After several seconds, Little Ben ex-
ecuted a pass to maneuver around the Cornell vehi-
cle, and then returned to his own lane (lower left).
Whereas the correctness of this behavior may seem
obvious, what is significant is that of the four robots
that appeared at this intersection, only Little Ben ap-
peared to proceed as a human operator would have
done.

Little Ben finished the 57-mile (92 km) course in
approximately 305 min, not including any penalty
time that may have been assessed by DARPA. Re-
markably, he was the only Track B entry that was able
to complete the challenge.
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9. SUMMARY

This paper has presented some of the technical details
of Little Ben, the autonomous ground vehicle built by
the Ben Franklin Racing Team for the 2007 DARPA
Urban Challenge. After quantifying the sensing and
reaction time performance requirements needed for
the upcoming challenge, the hardware and software
systems for Ben were designed to meet these strin-
gent criteria. An array of GPS/INS, LIDARs, and vi-
sion sensors was chosen to provide both omnidirec-
tional and long-range sensing information. The soft-
ware modules were written to robustly integrate in-
formation from the sensors, build an accurate map of
the surrounding environment, and plan an optimal
trajectory through the traffic network. This allowed
the vehicle to successfully complete the 2007 DARPA
Urban Challenge, even though we were severely con-
strained by time and budget constraints.
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