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Abstract— Passive stereo vision is widely used as a range
sensing technology in robots, but suffers fromdropouts: areas
of low texture where stereo matching fails. By supplementing a
stereo system with a strong texture projector, dropouts can be
eliminated or reduced. This paper develops a practical stereo
projector system, first by finding good patterns to project in
the ideal case, then by analyzing the effects of system blur
and phase noise on these patterns, and finally by designing a
compact projector that is capable of good performance out to
3m in indoor scenes. The system has been implemented and
has excellent depth precision and resolution, especially in the
range out to 1.5m.

I. I NTRODUCTION

Passive stereo vision is an important 3D sensing tech-
nology for object recognition and manipulation at short
range (30cm – 300cm). It produces dense point clouds with
excellent depth resolution, at high frame rates, and can deal
with moving objects. Because stereo systems use standard
imaging components, they are also potentially small, low
cost, and low power. However, textureless surfaces cannot be
matched by stereo, and produce dropouts in the stereo results
(see Figure 1, top). One method for removing dropouts is to
paint the scene with projected light (Figure 1, middle). But
finding the optimal texture is a complicated problem, influ-
enced by characteristics of both the projector, the pattern,
and the stereo cameras. This paper addresses this problem
from a theoretical and practical standpoint, with the end goal
of developing a compact, high-performance projected texture
system. The contributions of this paper are

• A method for generating near-optimal patterns using
techniques of Hamming codes and simulated annealing.

• Analysis of effects of phase and blur of the projector
and camera system.

• Design and construction of a compact projected texture
stereo system, and its experimental validation.

A. Projected Texture Systems

Block-matching stereo computes range by triangulation,
matching a small block in one image against a range of
blocks in the other [1]. The best match generates the range
to the center of the block.

Many complex stereo algorithms attempt to solve this
problem by “filling in” the low-texture areas using regular-
ization methods that propagate information from other areas
[2], [3]. A more direct method is to simply project a highly-
textured pattern [4], [5]. In Figure 1 middle, a projected
texture now covers the scene, and good stereo matches are

Fig. 1. Effects of texture on stereo. Top is a difficult scene,with dark
furniture and white reflective cup; right side is a color-coded disparity image,
showing that stereo is difficult with no texture. Middle is the same scene and
stereo algorithm with our projected texture system. Bottom is a reprojection
of the cup detail from an overhead view - note that the projected texture
is painted on the 3D points. At distances under a meter, the system has an
error of less than 2mm in all directions.

found almost everywhere (the reflection of the cup in the
table produces a bad match which is filtered).

But what pattern should be projected? In the first experi-
ments, we used a random black and white texture, in some
cases resulting in pockets of dropouts (see Figure 9, leftmost
image). What’s going on is that the pattern is too self-
similar in certain places, and the match is ambiguous over
the stereo search range. One way to approach the problem
is from ideas in coding theory. To transmit letters from an
alphabet, they are encoded in such a way as to differ from
each other as much as possible. In a similar manner, one
could try to make the matching blocks of stereo as dissimilar
as possible across the match region. The first part of this
paper pursues this idea using lexicographic codes, and shows
how to construct patterns that are better than the best current



alternative, non-recurring De Bruijn patterns [4]. A further
technique is developed using simulated annealing, and shown
to be even better.

While there is some research on good projected textures
for stereo, it is invariably done without taking the imper-
fections in the projector and camera into account, or the
resolution and phase differences between pattern and image.
It turns out that these factors are large determiners of the
quality of matching – patterns that are good in the ideal
case degrade under non-ideal conditions. In the second sec-
tion, the process of simulated annealing is extended to find
good patterns under realistic conditions, and show how their
performance dominates the ideal patterns, both in simulation
and with an experimental setup.

Finally, we develop a compact fixed-pattern projector with
simple optics, capable of texturing an indoor scene at dis-
tance up to 3m, even under bright daylight conditions. There
are several practical advantages to using a texture projector
with stereo. First, it requires only that the stereo pair be
calibrated, which is already easily achieved with current
stereo systems. Second, it supplements natural texture: the
projector need not overcome ambient light and poor surface
reflectance, it just has to add enough texture to featureless
surfaces to enable block matching to work. These features
make projected texture stereo much more robust and suitable
for real-world applications than systems that must view and
reconstruct a structured light pattern.

B. Related work

There are alternatives to stereo for close-range 3D sensing,
but they lack some of its advantages. Flash ladars [6] have
poor depth and spatial resolution, and have non-gaussian
error characteristics that are difficult to deal with. Line stripe
systems [7] have the requisite resolution but cannot achieve
10 Hz operation, nor deal with moving objects. Structured
light systems [8] are achieving reasonable frame rates and
can sometimes incorporate motion, but still rely on expensive
and high-powered projection systems, while being sensitive
to ambient illumination and object reflectance.

An interesting and early technology is the use of stereo
with unstructured light [9]. Even with projected texture,
block-matching stereo still forces a tradeoff between the
size of the match block (larger sizes have lower noise) and
the precision of the stereo around depth changes (larger
sizes “smear” the depth boundary). One possibility is to use
smaller matching blocks, but reduce noise by using many
frames with different projection patterns, thereby adding
information at each pixel. This technique is known asSpace-
time Stereo(STS) [4], [10], [11]. It produces outstanding
results on static scenes and under controlled illumination
conditions, but moving objects create obvious difficulties.
While there have been a few attempts to deal with motion
[11]–[13], the results are either computationally expensive
or perform poorly, especially for fast motions and depth
boundaries. In our case we use just a fixed pattern, and
perform stereo only in the spatial domain.

Fig. 2. Projector / stereo camera system. A patternP is projected onto
a surface to produceP ′, which is imaged by a left and right camera. For
stereo matching, the small red block in the left image is matched against a
range of blocks in the right image at the same vertical offset, indicated by
the outlined rectangle.

Several recent papers address the problem of finding
projected patterns that are not self-similar over some range.
Molinier et al. [5] randomly generate binary pixels to incre-
mentally fill a pattern, and test that each 5x5 block is unique.
Lim [4] uses the technique of De Bruijn sequences to find
similar patterns. However, these patterns are onlysatisficing,
that is, they are not necessarily patterns that are maximally
dissimilar. This paper improves on those results, showing that
patterns created with Hamming codes dominate De Bruijn
and random patterns. We also address problems of resolution,
phase and blur in practical systems, which to our knowledge
have not been considered in the projected texture literature.

II. I DEAL BLOCK-MATCHING PATTERNS

We consider a projector and stereo cameras configured
to be as nearly coincident as possible (see Figure 2). For
simplicity, the focal length of the projector and cameras are
similar, so that at any distance the projected pattern appears
to be the same size in the camera images. The patternP is
a grid of black and white squares, projected by a compact
device with a fixed pattern that we design (Section IV). When
it is seen by a camera, it produces an imageIP . In this
section, we takeP = IP , to study the properties of patterns
abstracted from the characteristics of the projector/camera
system. In the next section we introduce more realistic image
transfer functions that incorporate phase and blur noise.

A. Block-Matching Stereo

To test the effect of the pattern on stereo, we use a strictly
local block-matching stereo algorithm (Figure 3). A square
block of sizen × n in the left image is matched against



Fig. 3. Block matching and pattern repetition. A pattern of size n × N

is tiled horizontally and vertically. The minimum matching distance of any
block in the upper blue rectangle isd; two such blocks are shown. No matter
where the rectangle is placed, the same minimum matching distance will
hold, e.g., in the lower left blue rectangle.

N other blocks in the right image, along the same scanline
(epipolar geometry is assumed for the images);N is the
search range for stereo disparities. The match score is the
sum of absolute differences of the corresponding pixels in
the blocks (SAD). There are many other correlation measures
that could be used, such as Sum of Squared Differences
(SSD) or Normalized Cross-Correlation (NCC), or even
non-parameteric measures such as Census (see [14]). SAD
is reasonable in curbing the effect of outliers. Standard
correlation measures such as NCC or SSD would exaggerate
the differences between the various patterns reported here.

Since the two images view the same pattern, within every
rectangle ofP whose size isn×N , eachn× n block must
differ from every other one, and we can measure how good
the stereo matching is by looking at the minimum difference.
The bigger the minimum difference, the better the pattern for
stereo. We write:

S(P ) = min
i6=j

SAD(P, i, j), (1)

whereP is a pattern,i, j ≤ N are indices of the blocks, and
SAD(P, i, j) is the SAD score of blocksi andj of patternP .
A good score occurs when every block is maximally at least
a minimum SAD distance from every other block. This idea
is similar to Hamming codes, where each code is a minimum
Hamming distance from all other codes, and we exploit the
connection to find good patterns in the next section.

The reason we use the score of every block against every
other one, rather than just the first block, is to allow the
pattern to repeat. Given a scoreS(P ) for a patternP of size
n×N , we can construct any size pattern by just repeatingP
horizontally and vertically. It is easy to show that the order
of rows of P has no effect onS(P ), so anyn × N image
rectangle in a vertical stack of patternsP will have the exact
same rows as any other, and hence the same scoreS(P ).
Horizontally, it doesn’t matter where we place then × N
rectangle, since all blocks are at leastS(P ) different from
every other block along a row (Figure 3).

B. Minimum Hamming Distance Patterns

Each n × n block i in the pattern is a binary vector
vi of size n2. In this case, SAD computes the Hamming
distance between vectors SAD(i, j) =

∑
vi ⊕ vj . If vi and

vj were independent for alli 6= j, we could use the theory
of Hamming codes to find a set of vectors with a minimum
Hamming distanced (all vector pairs differ by at leastd)
[15].

Unfortunately, the vectors aren’t independent:vi+1 in-
corporatesn(n − 1) elements ofvi. Instead, we note that
the column vectorsci of the n × N pattern can be chosen
independently. If we choose these vectors to have a minimum
Hamming distanced, then each block is guaranteed to differ
by at leastd from every other block.

The problem then becomes: what is the maximum Ham-
ming distance for a set ofN binary vectors of sizen?
Although the problem in general is hard, a class of codes
known as “lexicographic codes,” or “lexicodes,” produces
near-optimal codes with a simple greedy algorithm [16]. For
a givend andn, start with the setLd

n = {0}. Using dictionary
ordering of vectors (i.e.,000, 001, 010, 011, . . .), find the next
vector of at least distanced from all vectors inLd

n, and add
it to Ld

n. The length of sequences produced by varyingd
from 1 to n are all powers of 2; for example, we get the
following sequence for‖ Ld

7 ‖: 128, 64, 16, 4, 2, 2, 2.
To construct ann × N pattern from the set of column

vectors of Ld
n, we add all vectors, repeating if necessary

until the pattern is filled, and then perform a random shuffle.
For example, with‖ L3

7 ‖= 16 andN = 128, we add the set
8 times, and then shuffle it. For the pattern lengthN = 128,
for each value ofn from 3 to 15, we constructed Hamming
Code patterns in this manner for all possibled’s, ran each
100,000 times, and picked ones with the bestS(P ) for each
n. The results are in Figure 4. As might be expected, the
graph shows a quadratic behavior as the size of the blocks
increases by the square of the side. Surprisingly, even though
there are only 8 vectors of length 3, it is possible to find a
pattern of length 128 that has non-zeroS(P ).

C. De Bruijn and Random Vectors

We compared the Hamming Code method against two
methods found in the literature: random selection and non-
recurring De Bruijn sequences [4]. De Bruijn sequences
of length s over an alphabetA (B(s,A)) contain all sub-
sequences of lengths exactly once. For our purposes,A
are column vectorsci of the pattern, and we replaceA by
the vector sizen. If we setn = 2, we are guaranteed that
every block in the sequence is unique, since no two blocks
can contain the same subsequence. A non-recurring sequence
NB(s, n) is a sequence where no two neighboring vectors
are the same. Note thatNB does not try to optimize the
separation between vectors, unlike the case with Hamming
codes.

In a manner similar to Hamming codes, we construct
patternsP using the vectors fromNB(2, n), choosing the
next vector at random to satisfy the De Bruijn conditions.
For eachn, we do this 100,000 times, and choose the best
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Fig. 4. Graph ofS(P ) for patterns with varying block widths, using several
different algorithsm. A matching distance ofN = 128 was used.

responseS(P ). The results, summarized in Figure 4, are all
slightly worse than the Hamming codes. Data for the case
n = 3 is missing, since no sequenceNB(2, 3) exists with
length 128.

Additionally we constructed random patterns of sizen×N
for comparison. Again we ran a set of 100,000 tests to find
the best such patterns for eachn; we also show the range of
generated patterns. Surprisingly, the best random patterns do
as well as the De Bruijn codes, but on average the random
patterns perform poorly. This explains why a single random
pattern does not fare well in comparisons in the literature.

D. Simulated Annealing

The results from random patterns above indicate that it
may be possible to find good patterns by search. Starting
from a random pattern, we use simulated annealing [17] to
search the large space of possible patterns, using the cost
functionS(P ). At any point, we find pairs of blocks that have
the minimum Hamming distance. We randomly choose one
of these pairs, and swap two random dissimlar pixels. The
change is accepted with probabilityexp−∆S/T , where∆S is
the change in the score, andT is a “temperature” that goes
to zero with increasing iterations. The minimum Hamming
distanceS(P ) is actually too coarse a scoring function, since
many pairs may be at the minimum distance. To compensate
we include in the score the fraction of block pairs at the
minimum distance.

For each n, we run simulated annealing for 100,000
iterations with 100 random restarts, and choose the best
result. Figure 4 shows that annealed patterns do significantly
better than Hamming distance, especially at largern.

III. I MAGED PATTERNS

Patterns that are good under ideal imaging conditions do
not fare well when phase and blur noise are introduced. In
this section we continue the use of simulated annealing to
find good patterns under these conditions.

Fig. 5. Pattern as viewed by the cameras. The projected pattern is blurred
by the optics of both the projector and the camera, and then re-sampled by
the camera imager.

A. Resolution

In general the pattern resolution will differ from the
image resolution – digital projectors have typical resolutions
of 1024x768, while consumer-grade cameras can have 10
megapixels. The difference in resolutions is usually ignored
in the projected texture literature, but is critical in designing
good patterns for projection. Figure 5 shows the superposi-
tion of the image pixels on a projected pattern (we assume
that the image has at least as good a resolution as the pattern).
The ratio of pixel sizes is defined as:

α =
pixel width of pattern
pixel width of image

(≥ 1) (2)

The ratioα defines the block sizenp of the pattern, given
a block sizen of the image:

np = ⌈n/α⌉

Np = ⌈N/α⌉

For example, with an image search range of7 × 128, and a
ratio of α = 2, the corresponding repeating pattern is4×64.

B. Phase and Blur

When projecting and viewing a pattern, the pattern and
image can be offset by an arbitrary amount, introducing
phase noise. For example, Figure 6 shows a pattern that
is sampled at 1/2 pixel offset in the image (red grid). The
original pattern on the left is mostly degraded to gray, with
only a few black and white pixels.

We model both phase noise and blur by introducing a
transfer function from the pattern to image pixels. Assume
that the 0,0 pixel of the pattern is aligned with the 0,0 pixel
of the image, with an offset given byx, y. We blur the pattern
P by convolving with a gaussian with standard deviationσ
to produce a continuous patternP (σ). The value of an image
pixel atu, v is the average intensity of its footprint inP (σ):

IP (σ)
x,y (u, v) =

∫
A(u+x,v+y)

P (σ)dA (3)



Fig. 6. Phase noise introduced by sampling at non-grid points.

whereA(u, v) is the area ofP (σ) taken by the image pixel
at u, v. The patternP (σ) models the total system blur, to
which both the projector and camera optics contribute. In
practice, the integral of Equation 3 is computed by placing
a fine grid overP , convolving with a discrete gaussian, and
then summing up over the image pixel area.I

P (σ)
x,y indicates

the image formed by takingIP (σ)
x,y (u, v) for every u, v at a

fixed offsetx, y.
The scoring functionS(P ) of Equation 1 can be modified

to take phase into account, by minimizing over every possible
displacement of less than 1 image pixel in the horizontal and
vertical directions.

S+(P (σ)) = min
0≤x,y<1

min
|i−j|>1

SAD(IP (σ)
x,y , i, j). (4)

The scoring functionS+ incorporates both phase shifting and
system blur. It also changes the minimization over blocks to
consider only block pairs that are at least 2 positions apart.
When the correct disparity is at a half-pixel boundary in the
image, the response will be evenly split between blocks at
two neighboring positions, and we don’t want to penalize
this.

C. Good Patterns under Noise

The optimization developed in the previous section for
finding good patterns carry over directly here, using the
new match scoreS+. We first generate a random pattern
P , transform it to an imageIP (σ), then compute the SAD
scoresS+(P (σ)) by minimizing over all phases. Because
of the blur step, there is a unique minimum-score pair; we
translate their indices to the respectivenp blocks in the
pattern, and interchange two random dissimilar pixels in
that pair. The change is accepted if it passes the annealing
criterion, and the cycle repeats with decreasing temperature.
Because the calculation ofIP and the scoring function are
more complicated, we limited the annealing to 5000 steps
and 10 restarts.

Figure 7 shows results for phase noise only (no blur) using
n = 11, for all values ofnp from 3 to 11. The results are
quite interesting. First, the best minimum SAD score, 40, is
substantially less than the ideal pattern value of 52; this is the
effect of phase noise. The best value also occurs atα = 11/8.
There are two competing phenomena that are balanced: phase
noise penalizes smallα because of aliasing in the transfer
function; and largeα have fewer pattern elements in annp×
np block, limiting the Hamming distance between blocks.

For comparison, we also derive ideal patterns – i.e., using
S(P ) on the pattern and not taking the image transfer
function into account – using simulated annealing at the same
resolutions, and then measure their scores underS+P (0).
The ideal patterns can be optimized for one particular phase,
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Fig. 8. Minimum SAD scores forn = 11 under different pattern sizes
from 3 to 11, with blur from 0.0 to 2.0 pixels. Minimum SAD scoregets
lower for higher blur, and the best pattern shifts to bigger pixels (coarser
blocks). The legend indicates the block size of the pattern and the image.

but there is no guarantee that they will have good scores in
other phases. Overall, the scores are lower, emphasizing the
importance of creating patterns that explicitly account for
phase noise.

When blur is added, the scores go down, and the best
α shifts higher (the pattern becomes coarser). Both these
phenomena are expected, since the pattern becomes more
diffuse and loses fine structure. Figure 8 summarizes the
scores for image block size 11, and blur from 0.0 to 2.0
image pixels.

D. Experiments

We tested the optimized patterns against both ideal pat-
terns and completely random patterns, at various image block
sizes. A planar target was placed at an appropriate distance
for each of the image block sizes to keep the pattern blocks
in correspondence; the target contained the different patterns
under test (see Figure 9). The printed planar target is much
easier to change for experiments (and much cheaper) than



Fig. 9. Disparity images from three different patterns. Leftimage is the
planar target with 3 patterns, as viewed by the left stereo camera; right is the
computed stereo disparity. In the target, the upper left subimage is a random
pattern; upper right is an ideal repeating pattern withnp = 3; lower right
is an optimized pattern withnp = 3. Lower left corner has been left blank.

the etched pattern in the projector (Section IV). The target
was presented fronto-planar to the cameras, which is a good
approximation of how the projected texture will appear –
note that a projected pattern always appears the same to a
camera if it is co-located with the projection, and the focal
lengths match. To a first approximation, these conditions are
satisfied by our system.

For these tests, we usedn = 5, 7, 9, 11 for the size of the
image blocks, andnp = 3 for the patterns, with a search
range ofN = 128; all pattern pixel sizes were the same.
We also filtered based on the uniqueness of the response,
eliminating any disparity that was not at least 50% better
than the next best match. Figure 9 shows typical results from
the stereo, atn = 7. The exposure on the cameras was turned
down, to soften the pattern contrast and make matching more
difficult.

Note first that it is difficult to distinguish the ideal pattern
from the optimized pattern (right images of the first set).
Still, the upper right ideal pattern has a smaller minimum
SAD distance, which causes dropout striping in the yellow
disparity image. By contrast, the optimized pattern is filled
in. The completely random pattern fares most poorly, as
expected, with numerous holes scattered throughout.

More qualitatively, we compared the dropout rate at each
of the block sizes, for the three different pattern types:
fully random, ideal pattern, and optimized pattern1. For the
optimized pattern, we estimated the image blur to be about
0.5 pixels, based on images of sharp vertical lines. We
computed the dropout rate as the percent ratio of the number
of pixels not passing the next-best-match cutoff, to the total
number of pixels in the image of the pattern. The results are
summarized in the table below.

First, note that the larger SAD matching blocks do much
better at removing dropouts. At the lowest block size ofn =
5, all the patterns have a large percentage of dropouts, with
the random pattern actually doing better than the ideal one.In
all cases, the optimized pattern does best, with no significant
dropouts untiln = 5. The random and ideal patterns both
have significant dropouts atn = 7, 9.

1The De Bruijn patterns do not exist fornp = 3, and in any case they
are subsumed by the ideal patterns.

TABLE I

DROPOUT PERCENTAGE FOR PATTERNS WITHnp = 3

n random ideal optimized
5 28.6 33.3 10.9
7 14.2 3.0 0.6
9 4.1 1.3 0.2

11 0.7 0.4 0.01

IV. COMPACT PROJECTOR

We have developed a compact, fixed-pattern projector
based on the results of the previous sections. Figure 10
shows the optical design of the manufactured projector. A
high-powered, large-format LED is collimated onto a metal-
covered glass disk etched with the pattern (called a “gobo”).
The pattern is projected using a standard C-format camera
lens, with a focal length similar to that of the stereo cameras.

A. Power and Synchronization

The main issue with the projector is to send enough optical
energy out to be seen easily by the camera under ambient
light, while maintaining eye safety. A high-power LED with
optical output of 5 watts and large surface area was used;
for comparison, a typical bright display projector has about
3 watts of output power. Good performance was achieved
by:

• Using a red LED – red is much less harmful to the eye
than any other visible color. The device is eye safe as
defined by the limits of IEC 62471 for LED emissions
[18], as tested by an independent lab. It would also be
safe in the infrared range.

• Pulsing. The LED is pulsed in synchrony with the ex-
posure of the camera. By limiting the exposure time to
several milliseconds, the average power of the projector
is reduced, while maintaining high power with respect
to ambient light during exposure.

A bandwidth filter at the LED frequency could improve
performance by rejecting ambient light, but was not included
because we want to be able to capture untextured images
with the same stereo pair. The system can be run in a mode
where every other frame is captured with the texture, giving
registered stereo and normal images separated by 1/30 of a
second. It is also possible to run the system at 60 Hz, and
we are upgrading the camera electronics to do this.

B. Performance

The system functions well in even bright daylight condi-
tions indoors, out to a distance of 2 to 3 meters. Without
bandwidth filtering, it is not strong enough to overcome
direct sunlight (1300W/m2) except very near the projector,
but it can still supplement whatever natural texture exists,
unlike structured light devices.

We tested the device with a 50 degree field of view, using
both white and 5% reflectance black planar targets at differ-
ent distances. The SAD block-matching stereo algorithm of
[1] was used, with an image block size of11×11. The error
is taken to be the standard deviation from the best-fit plane.



Fig. 10. Optical design of the compact projector, showing major compo-
nents: high-power LED, condenser, gobo pattern disk, and projection lens.
Overall length is1̃0cm.
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Fig. 11. STD error of a planar target. For a white target, the error stays
below 2mm until after 1.2m, then goes up to about 1cm at 2.5m. For avery
dark target, it is also low close up, then becomes larger at distance, when
the pattern is difficult to see.

From Figure 11, the system shows very low error, even out
to 2.5 meters. For the white target, the error stays below
1cm throughout this range. Some of the error at the larger
distances comes from calibration, as the reconstructed plane
will not be perfectly flat. Up to over 1 meter, the error is
about 2mm, which is good enough to reconstruct fine objects.

Note that we are using a standard stereo block-matching
algorithm for these experiments, without modification. A
concern is that, because of the blockiness of the pattern,
subpixel resolution in the disparity calculation might not
be possible, because the block correlation does not have
a smooth transition across the image. However, because
of significant blur in both camera and projector, subpixel
resolution works well, as can be seen in Figure 1. The 3D
points on the cup, for example, would not fit a curve so well
without sub-pixel resolution.

Even with a very dark (5% reflectance) target, the system
gives good results up to 2m, with some degradation in error
at the larger distance. Another issue with very dark targetsis
that dropouts start to occur. We set a cutoff of 18% for the
minimum distance between the highest and second-highest
SAD response. For the white target, every pixel made this
cutoff. For the dark target, dropouts start to occur at 1.2m,
and increase linearly to 2.5m, when there are no pixels that
make the cutoff.

Fig. 12. Application to estimating the articulation model of adrawer.
This view shows the point cloud extracted from the stereo system, with the
projected texture, and the track of the door extracted from previous point
clouds as it moved. Image courtesy of Juergen Sturm.

We have used the projected texture system in several ap-
plications, most especially the recognition of tabletop objects
using both 2D and 3D features. An interesting application is
learning the articulation models of common objects (Figure
12, from [19]).

One interesting aspect of the system is that it can work
with fast block-matching algorithms, without the perfor-
mance loss associated with more sophisticated methods.
High-performance block-matching algorithms have been de-
veloped as part of the ROS open-source robotic software
system [20]. Running on a 3GHz Intel i7 processor, with a
single core, 640x480 images with 64 disparities and subpixel
disparity resolution achieve a 30 Hz frame rate.

C. Algorithm and Datasets

The stereo algorithms and the pattern generators are avail-
able under open source BSD license as part of the ROS
application packages (Robot Operating System -http:
//www.ros.org/Papers/ICRA2010 Konolige).

V. CONCLUSIONS ANDFUTURE WORK

We have explored the concept of good projection textures
for overcoming stereo dropouts, both at the conceptual level
of finding patterns that exhibit good dissimilarity betweenall
blocks in a search range, and at the system level of dealing
with image resolution, phase and blur. The fixed-pattern
projection and stereo device that we constructed is a practical
sensor system for robotics applications, filling a niche for
short range dense 3D sensing that can deal with moving ob-
jects. It is being incorporated into the PR2 mobile robots built
at Willow Garage (http://www.willowgarage.com),
and will be the primary sensor for tabletop manipulation.

One problem with the sensor is that the strong red pro-
jected texture is annoying when viewed directly. The aversion
response helps to make the device safe, but it is not useful



for directly imaging faces because of this drawback. An IR
version, with lower power and a more sensitive imager, is a
possible solution.
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