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Abstract— Passive stereo vision is widely used as a range
sensing technology in robots, but suffers fromdropouts. areas
of low texture where stereo matching fails. By supplementing a
stereo system with a strong texture projector, dropouts can &
eliminated or reduced. This paper develops a practical stereo
projector system, first by finding good patterns to project in
the ideal case, then by analyzing the effects of system blur
and phase noise on these patterns, and finally by designing a
compact projector that is capable of good performance out to
3m in indoor scenes. The system has been implemented and
has excellent depth precision and resolution, especially in the
range out to 1.5m.

|. INTRODUCTION

Passive stereo vision is an important 3D sensing tec
nology for object recognition and manipulation at shor
range (30cm — 300cm). It produces dense point clouds with
excellent depth resolution, at high frame rates, and cah dea
with moving objects. Because stereo systems use standard
imaging components, they are also potentially small, low
cost, and low power. However, textureless surfaces careot b
matched by stereo, and produce dropouts in the stereogesult
(see Figure 1, top). One method for removing dropouts is to
paint the scene with projected light (Figure 1, middle). But
finding the optimal texture is a complicated problem, influ-
enced by characteristics of both the projector, the pattern
and the Stere? cameras. T_hIS paper a_ddres_ses this pmbﬁ&j 1. Effects of texture on stereo. Top is a difficult scewéh dark
from a theoretical and practical standpoint, with the enal go furniture and white reflective cup; right side is a color-eddiisparity image,

of developing a compact, high-performance projected textushowing that stereo is difficult with no texture. Middle i®tdame scene and

; ; ; stereo algorithm with our projected texture system. Bottera reprojection
system. The contributions of this paper are of the cup detail from an overhead view - note that the prepdexture

« A method for generating near-optimal patterns using painted on the 3D points. At distances under a meter, thersysas an
techniques of Hamming codes and simulated annealinge" °f 1ess than 2mm in all directions.

« Analysis of effects of phase and blur of the projector

and camera system. _ found almost everywhere (the reflection of the cup in the
» Design and construc_tlon of a compact p_rOJe_cted texturg ple produces a bad match which is filtered).

stereo system, and its experimental validation. But what pattern should be projected? In the first experi-
ments, we used a random black and white texture, in some
cases resulting in pockets of dropouts (see Figure 9, lsftmo

Block-matching stereo computes range by triangulatiorimage). What's going on is that the pattern is too self-
matching a small block in one image against a range @limilar in certain places, and the match is ambiguous over
blocks in the other [1]. The best match generates the rangee stereo search range. One way to approach the problem
to the center of the block. is from ideas in coding theory. To transmit letters from an

Many complex stereo algorithms attempt to solve thislphabet, they are encoded in such a way as to differ from
problem by “filling in” the low-texture areas using regular-each other as much as possible. In a similar manner, one
ization methods that propagate information from other @reaould try to make the matching blocks of stereo as dissimilar
[2], [3]. A more direct method is to simply project a highly- as possible across the match region. The first part of this
textured pattern [4], [5]. In Figure 1 middle, a projectedpaper pursues this idea using lexicographic codes, andsshow
texture now covers the scene, and good stereo matches hosv to construct patterns that are better than the bestrdurre

A. Projected Texture Systems



alternative, non-recurring De Bruijn patterns [4]. A fugth
technique is developed using simulated annealing, andrshow
to be even better.

While there is some research on good projected textures
for stereo, it is invariably done without taking the imper-
fections in the projector and camera into account, or the
resolution and phase differences between pattern and image
It turns out that these factors are large determiners of the
quality of matching — patterns that are good in the ideal
case degrade under non-ideal conditions. In the second sec-
tion, the process of simulated annealing is extended to find
good patterns under realistic conditions, and show how theg
performance dominates the ideal patterns, both in sinwati
and with an experimental setup.

Finally, we develop a compact fixed-pattern projector with
simple optics, capable of texturing an indoor scene at dis-
tance up to 3m, even under bright daylight conditions. There
are several practical advantages to using a texture pooject Right Cam
with stereo. First, it requires only that the stereo pair be
calibrated, which is already easily achieved with current
stereo systems. Second, it supplements natural textuge: #y 2 projector / stereo camera system. A pattEris projected onto
projector need not overcome ambient light and poor surfagesurface to produc®’, which is imaged by a left and right camera. For
reflectance, it just has to add enough texture to featurele¥greo matching, the small red block in the left image is matcigedhat a

. range of blocks in the right image at the same vertical offselicated by
surfaces to enable block matching to work. These featur@g outiined rectangle.
make projected texture stereo much more robust and suitable
for real-world applications than systems that must view and

P

Projector

Left Cam

reconstruct a structured light pattern. Several recent papers address the problem of finding
projected patterns that are not self-similar over someeang
B. Related work Molinier et al. [5] randomly generate binary pixels to incre

) _mentally fill a pattern, and test that each 5x5 block is unique
There are alternatives to stereo for close-range 3D sensing, [4] uses the technigue of De Bruijn sequences to find

but they lack some of its advantages. Flash ladars [6] haGyilar patterns. However, these patterns are saljsficing
poor depth and spatial resolution, and have non-gaussigf is; they are not necessarily patterns that are maximall
error characteristics that ar.e.d|ff|cult to. deal with. Linepe _ dissimilar. This paper improves on those results, shoviiag t
systems [7] have the requisite resolution but cannot aehieyaterns created with Hamming codes dominate De Bruijn
10 Hz operation, nor deal with moving objects. Structured,q random patterns. We also address problems of resglution
light systems [8] are achieving reasonable frame rates "?‘Bﬂase and blur in practical systems, which to our knowledge

can sometimes incorporate motion, but still rely on expensi paye not been considered in the projected texture litezatur
and high-powered projection systems, while being semsitiv

to ambient illumination and object reflectance. Il. IDEAL BLOCK-MATCHING PATTERNS

An interesting and early technology is the use of stereo We consider a projector and stereo cameras configured
with unstructuredlight [9]. Even with projected texture, to be as nearly coincident as possible (see Figure 2). For
block-matching stereo still forces a tradeoff between thgimplicity, the focal length of the projector and cameras ar
size of the match block (larger sizes have lower noise) anglmilar, so that at any distance the projected pattern appea
the precision of the stereo around depth changes (larger be the same size in the camera images. The paftam
sizes “smear” the depth boundary). One possibility is to usg grid of black and white squares, projected by a compact
smaller matching blocks, but reduce noise by using marnjevice with a fixed pattern that we design (Section 1V). When
frames with different projection patterns, thereby adding is seen by a camera, it produces an imdde In this
information at each pixel. This technique is knownSgmce- section, we take® = I*, to study the properties of patterns
time Stereo(STS) [4], [10], [11]. It produces outstanding abstracted from the characteristics of the projector/came
results on static scenes and under controlled illuminatiogystem. In the next section we introduce more realistic Bnag
conditions, but moving objects create obvious difficultiestransfer functions that incorporate phase and blur noise.
While there have been a few attempts to deal with motion .

[11][13], the results are either computationally expeasi A- Block-Matching Stereo

or perform poorly, especially for fast motions and depth To test the effect of the pattern on stereo, we use a strictly
boundaries. In our case we use just a fixed pattern, ahatal block-matching stereo algorithm (Figure 3). A square
perform stereo only in the spatial domain. block of sizen x n in the left image is matched against



B. Minimum Hamming Distance Patterns

Each n x n block ¢ in the pattern is a binary vector
v; of size n?. In this case, SAD computes the Hamming
distance between vectors SADj) = > v; @ v;. If v; and
v; were independent for afl # j, we could use the theory
of Hamming codes to find a set of vectors with a minimum
Hamming distancel (all vector pairs differ by at leasf)
[15].

EEanE! Unfortunately, the vectors aren’t independent;; in-
corporatesn(n — 1) elements ofv;. Instead, we note that
Fig. 3. Block matching and pattern repetition. A pattern aesi x N .the column vectors; of the n x N pattern can be Chc.)S.en
is tiled horizontally and vertically. The minimum matchingtdisce of any independently. If we choose these vectors to have a minimum
block in the upper blue rectangledstwo such blocks are shown. No matter Hamming distance, then each block is guaranteed to differ
where the rectangle is placed, the same minimum matching déstaric by at leastd from every other block.
hold, e.g., in the lower left blue rectangle. . .
The problem then becomes: what is the maximum Ham-
ming distance for a set ofV binary vectors of sizen?
Although the problem in general is hard, a class of codes
N other blocks in the right image, along the same scanlinenown as “lexicographic codes,” or “lexicodes,” produces
(epipolar geometry is assumed for the images);is the near-optimal codes with a simple greedy algorithm [16]. For
search range for stereo disparities. The match score is thgjivend andn, start with the seL¢ = {0}. Using dictionary
sum of absolute differences of the corresponding pixels igrdering of vectors (i.e000, 001,010, 011, .. .), find the next
the blocks (SAD). There are many other correlation measur@ector of at least distanaé from all vectors inL?, and add
that could be used, such as Sum of Squared Differencisto L¢. The length of sequences produced by varyihg
(SSD) or Normalized Cross-Correlation (NCC), or everrom 1 to n are all powers of 2; for example, we get the
non-parameteric measures such as Census (see [14]). SAlowing sequence fof| L¢ ||: 128,64, 16,4,2,2, 2.
is reasonable in curbing the effect of outliers. Standard To construct ann x N pattern from the set of column
correlation measures such as NCC or SSD would exaggeraiectors of L¢, we add all vectors, repeating if necessary

n?

the differences between the various patterns reported hereintil the pattern is filled, and then perform a random shuffle.

Since the two images view the same pattern, within everfyor example, with| L? ||= 16 and N = 128, we add the set
rectangle ofP whose size is: x N, eachn x n block must 8 times, and then shuffle it. For the pattern length= 128,
differ from every other one, and we can measure how god@r each value of. from 3 to 15, we constructed Hamming
the stereo matching is by looking at the minimum differenceCode patterns in this manner for all possilfe, ran each
The bigger the minimum difference, the better the pattern foL00,000 times, and picked ones with the b&6P) for each
stereo. We write: n. The results are in Figure 4. As might be expected, the
graph shows a quadratic behavior as the size of the blocks
increases by the square of the side. Surprisingly, evergthou
there are only 8 vectors of length 3, it is possible to find a
pattern of length 128 that has non-ze§0P).

S(P) =min SAD(P, i, j), 1)

17£]

where P is a patternj, j < N are indices of the blocks, and C. De Bruijn and Random Vectors

SAD(P,1,j) is the SAD score of blocksand; of patternpP. We compared the Hamming Code method against two
A good score occurs when every block is maximally at leaghethods found in the literature: random selection and non-
a minimum SAD distance from every other block. This ideﬁecurring De Bruijn sequences [4]. De Bruijn sequences
is similar to Hamming codes, where each code is a minimuig length s over an alphabet! (B(s, A)) contain all sub-
Hamming distance from all other codes, and we exploit th§equences of length exactly once. For our purposes,
connection to find good patterns in the next section. are column vectors; of the pattern, and we replacé by

The reason we use the score of every block against evethe vector sizen. If we setn = 2, we are guaranteed that
other one, rather than just the first block, is to allow thevery block in the sequence is unigue, since no two blocks
pattern to repeat. Given a scos¢P) for a patternP of size  can contain the same subsequence. A non-recurring sequence
nx N, we can construct any size pattern by just repeating NB(s,n) is a sequence where no two neighboring vectors
horizontally and vertically. It is easy to show that the ardeare the same. Note th&B does not try to optimize the
of rows of P has no effect or5(P), so anyn x N image separation between vectors, unlike the case with Hamming
rectangle in a vertical stack of patterRswill have the exact codes.
same rows as any other, and hence the same s¥(dpe. In a manner similar to Hamming codes, we construct
Horizontally, it doesn’t matter where we place thex N patternsP using the vectors fronNB(2,n), choosing the
rectangle, since all blocks are at led#tP) different from next vector at random to satisfy the De Bruijn conditions.
every other block along a row (Figure 3). For eachn, we do this 100,000 times, and choose the best
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by the optics of both the projector and the camera, and theameled by
the camera imager.

Fig. 4. Graph ofS(P) for patterns with varying block widths, using several
different algorithsm. A matching distance 6f = 128 was used.

A. Resolution

responseS(P). The results, summarized in Figure 4, are all In general the pattern resolution will differ from the

slightly worse than the Hamming codes. Data for the cadg'age resolution — digital projectors have typical resohs
n = 3 is missing, since no sequenddB(2,3) exists with of 1024x768, while consumer-grade cameras can have 10

length 128. megapixels. The difference in resolutions is usually igaor
Additionally we constructed random patterns of size N in the projected texture literature, but is critical in dgsng

for comparison. Again we ran a set of 100,000 tests to fin@00d patterns for projection. Figure 5 shows the superposi-

the best such patterns for eachwe also show the range of tion of the image pixels on a projected pattern (we assume

generated patterns. Surprisingly, the best random pattérn that the image has at least as good a resolution as the pattern

as well as the De Bruijn codes, but on average the randohi€ ratio of pixel sizes is defined as:

patterns perform poorly. This explains why a single random pixel width of pattern

pattern does not fare well in comparisons in the literature. o= pixel width of image (= 1) (2)

D. Simulated Annealing The ratioo defines the block size,, of the pattern, given
The results from random patterns above indicate that & Plock sizen of the image:

may be possible to find good patterns by search. Starting n, =[n/al

from a random pattern, we use simulated annealing [17] to P

search the large space of possible patterns, using the cost Ny =[N/a]

function S(P). At any point, we find pairs of blocks that have g example, with an image search range7of 128, and a

the minimum Hamming distance. We randomly choose ongyig of o — 2, the corresponding repeating patterntis 64.
of these pairs, and swap two random dissimlar pixels. The

change is accepted with probabilityp~25/T, whereAS is  B. Phase and Blur
the change in the score, afidis a “temperature” that goes
to zero with increasing iterations. The minimum Hamminq

distanceS(P) is actually too coarse a scoring function, since,, -« 1 Jise  For example, Figure 6 shows a pattern that

many p:aidrs mayhbe at the rr?inifmum diSt?T)Cle' ;’o C‘?mpe”i Eesampled at 1/2 pixel offset in the image (red grid). The
we Inciu Z. In the score the fraction of block pairs at t eE)riginal pattern on the left is mostly degraded to gray, with
minimum distance. only a few black and white pixels.

. FOT eachp, we run simulated annealing for 100,000 We model both phase noise and blur by introducing a
iterations with 100 random restarts, and choose the beﬂ%

it Fi 4sh that led patt do sianik Lnsfer function from the pattern to image pixels. Assume
result. Figure 4 shows that annealed patterns do signiicant,,; 1ne 0,0 pixel of the pattern is aligned with the 0,0 pixel
better than Hamming distance, especially at langer

of the image, with an offset given by, . We blur the pattern
1. | MAGED PATTERNS P by convolving with a gaussian with standard deviation
c{ﬁ produce a continuous patteR{s). The value of an image

When projecting and viewing a pattern, the pattern and
mage can be offset by an arbitrary amount, introducing

Patterns that are good under ideal imaging conditions
not fare well when phase and blur noise are introduced. In
t_h|s section we continue the use of _s_|mulated annealing to 1P (u, v) = / P(o)dA
find good patterns under these conditions. Y Alutz,v+y)

xel atu, v is the average intensity of its footprint iB(o):

®)
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Phase noise introduced by sampling at non-grid points

Fig. 6.

where A(u, v) is the area ofP (o) taken by the image pixel
at u,v. The patternP(o) models the total system blur, to
which both the projector and camera optics contribute. |
practice, the integral of Equation 3 is computed by placin
a fine grid overP, convolving with a discrete gaussian, and
then summing up over the image pixel aréﬁé") indicates
the image formed by takingﬂ,") (u,v) for everyu,v at a
fixed offsetz, y.

The scoring functiort(P) of Equation 1 can be modifie
to take phase into account, by minimizing over every possib'
displacement of less than 1 image pixel in the horizontal ar
vertical directions.

S*T(P(s)) = min

i P(o) ;
0<z,y<1 |Z‘H§1|I;1 SAD(I ,Z,j). (4)

The scoring functiors™ incorporates both phase shifting and
system blur. It also changes the minimization over blocks t

Minimum SAD distance S+

Fig. 7.
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consider only block pairs that are at least 2 positions apa
When the correct disparity is at a half-pixel boundary in th
image, the response will be evenly split between blocks
two neighboring positions, and we don’t want to penaliz
this.

Minimum SAD distance S+

C. Good Patterns under Noise

The optimization developed in the previous section fo
finding good patterns carry over directly here, using the
new match scorés™. We first generate a random pattern o
P, transform it to an II_’n_ag_d_P("), then compute the SAD E‘logm 3to 11, with blur from 0.0 to 2.0 pixels. Minimum SAD scogets
scoresSt(P(c)) by minimizing over all phases. Becausejower for higher blur, and the best pattern shifts to biggiels (coarser
of the blur step, there is a unique minimum-score pair; welocks). The legend indicates the block size of the pattechthe image.
translate their indices to the respectiug blocks in the
pattern, and interchange two random dissimilar pixels in
that pair. The change is accepted if it passes the annealifdt there is no guarantee that they will have good scores in
criterion, and the cycle repeats with decreasing tempezatuOther phases. Overall, the scores are lower, emphasizéng th
Because the calculation df” and the scoring function are importance of creating patterns that explicitly account fo
more complicated, we limited the annealing to 5000 stegghase noise.
and 10 restarts. When blur is added, the scores go down, and the best

Figure 7 shows results for phase noise only (no blur) using shifts higher (the pattern becomes coarser). Both these
n = 11, for all values ofn, from 3 to 11. The results are Phenomena are expected, since the pattern becomes more
quite interesting. First, the best minimum SAD score, 40, igiffuse and loses fine structure. Figure 8 summarizes the
substantially less than the ideal pattern value of 52; thieé scores for image block size 11, and blur from 0.0 to 2.0
effect of phase noise. The best value also occuns-atl1/8.  image pixels.

There are two competing phenomena that are balanced: phase )

noise penalizes smatl because of aliasing in the transferD: EXperiments

function; and largex have fewer pattern elements in ap x We tested the optimized patterns against both ideal pat-
n, block, limiting the Hamming distance between blocks. terns and completely random patterns, at various imagebloc

For comparison, we also derive ideal patterns — i.e., usirgizes. A planar target was placed at an appropriate distance
S(P) on the pattern and not taking the image transfefor each of the image block sizes to keep the pattern blocks
function into account — using simulated annealing at theesann correspondence; the target contained the differenée pet
resolutions, and then measure their scores urifeP(0). under test (see Figure 9). The printed planar target is much
The ideal patterns can be optimized for one particular phaseasier to change for experiments (and much cheaper) than

05 1 15 2 25
Blur in image pixels

Minimum SAD scores forn = 11 under different pattern sizes



TABLE |
DROPOUT PERCENTAGE FOR PATTERNS WITH, = 3

n  random ideal optimized

5 28.6 333 10.9

7 14.2 3.0 0.6

9 4.1 1.3 0.2
11 0.7 0.4 0.01

Fig. 9. Disparity images from three different patterns. Liafage is the IV.  COMPACT PROJECTOR

planar target with 3 patterns, as viewed by the left stereweca; right is the We have developed a compact, fixed-pattern projector

computed stereo disparity. In the target, the upper leftrsabe is a random ; ; ;

pattern; upper right is an ideal repeating pattern with= 3; lower right based on the . results _Of the previous sections. F_|gure 10

is an optimized pattern with,, = 3. Lower left comer has been left blank. Shows the optical design of the manufactured projector. A
high-powered, large-format LED is collimated onto a metal-

covered glass disk etched with the pattern (called a “gobo”)

the etched pattern in the projector (Section IV). The targethe pattern is projected using a standard C-format camera
was presented fronto-planar to the cameras, which is a got&hs, with a focal length similar to that of the stereo camera
approximation of how the projected texture will appear —

. A. Power and Synchronization
note that a projected pattern always appears the same to a y

camera if it is co-located with the projection, and the focal The main issue with the projector is to send enough optical
lengths match. To a first approximation, these conditiors aEN€rgy out to be seen easily by the camera under ambient
satisfied by our system. light, while maintaining eye safety. A high-power LED with
For these tests, we used— 5, 7,9, 11 for the size of the optical output of 5 watts and large surface area was used,
image blocks, andi, = 3 for the patterns, with a search for comparison, a typical bright display projector has et_bou
range of N = 128: all pattern pixel sizes were the same 3 Watts of output power. Good performance was achieved

We also filtered based on the uniqueness of the respon?é(f

eliminating any disparity that was not at least 50% better « Using a red LED — red is much less harmful to the eye
than the next best match. Figure 9 shows typical results from than any other visible color. The device is eye safe as
the stereo, at = 7. The exposure on the cameras was turned ~ defined by the limits of IEC 62471 for LED emissions
down, to soften the pattern contrast and make matching more [18], as tested by an independent lab. It would also be
difficult. safe in the infrared range.

Note first that it is difficult to distinguish the ideal patter ~ * Pulsing. The LED is pulsed in synchrony with the ex-
from the optimized pattern (right images of the first set). ~ Posure of the camera. By limiting the exposure time to
Still, the upper right ideal pattern has a smaller minimum  Several milliseconds, the average power of the projector
SAD distance, which causes dropout striping in the yellow IS reduced, while maintaining high power with respect
disparity image. By contrast, the optimized pattern isdille ~ to ambient light during exposure.
in. The completely random pattern fares most poorly, as A bandwidth filter at the LED frequency could improve
expected, with numerous holes scattered throughout. performance by rejecting ambient light, but was not inctude

More qualitatively, we compared the dropout rate at eadhecause we want to be able to capture untextured images
of the block sizes, for the three different pattern typeswith the same stereo pair. The system can be run in a mode
fully random, ideal pattern, and optimized patferRor the Where every other frame is captured with the texture, giving
optimized pattern, we estimated the image blur to be abotggistered stereo and normal images separated by 1/30 of a
0.5 pixels, based on images of sharp vertical lines. Weecond. It is also possible to run the system at 60 Hz, and
computed the dropout rate as the percent ratio of the numb&e are upgrading the camera electronics to do this.
of pixels not passing the next-best-match cutoff, to thaltot f
number of pixels in the image of the pattern. The results ar%' Performance
summarized in the table below. The system functions well in even bright daylight condi-

First, note that the larger SAD matching blocks do muclons indoors, out to a distance of 2 to 3 meters. Without
better at removing dropouts. At the lowest block sizeief ~ Pandwidth filtering, it is not strong enough to overcome
5, all the patterns have a large percentage of dropouts, wiflf€Ct sunlight (1300%/m?) except very near the projector,
the random pattern actually doing better than the ideal ione. but it can still supplement whatever natural texture exists

all cases, the optimized pattern does best, with no signtficatnlike structured light devices. _ _ _
dropouts untiln = 5. The random and ideal patterns both We tested the device with a 50 degree field of view, using
have significant dropouts at = 7, 9. both white and 5% reflectance black planar targets at differ-

ent distances. The SAD block-matching stereo algorithm of
1The De Bruijn patterns do not exist for, = 3, and in any case they [1] was used, with an Image bIopk_smeb]fx 11. The e_rror
are subsumed by the ideal patterns. is taken to be the standard deviation from the best-fit plane.
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Fig. 10. Optical design of the compact projector, showing megompo-
nents: high-power LED, condenser, gobo pattern disk, angegtion lens.
Overall length is10cm.

Fig. 12.  Application to estimating the articulation model ofdeawer.

003 This view shows the point cloud extracted from the steretesyswith the
0025 : 4 | projected texture, and the track of the door extracted froavipus point
+ 5% Black clouds as it moved. Image courtesy of Juergen Sturm.

001 . We have used the projected texture system in several ap-

0.005 e ] plications, most especially the recognition of tabletojeots

R using both 2D and 3D features. An interesting application is
learning the articulation models of common objects (Figure

Distance (m)
12, from [19]).
Fig. 11. STD error of a planar target. For a white target, thierestays ; : ; ;
below 2mm until after 1.2m, then goes up to about 1cm at 2.5m. Ferya One Interesting aspect of the system Is that it can work

dark target, it is also low close up, then becomes larger aantis, when With fast block-matching algorithms, without the perfor-
the pattern is difficult to see. mance loss associated with more sophisticated methods.
High-performance block-matching algorithms have been de-
veloped as part of the ROS open-source robotic software
From Figure 11, the system shows very low error, even oglystem [20]. Running on a 3GHz Intel i7 processor, with a
to 2.5 meters. For the white target, the error stays belogingle core, 640x480 images with 64 disparities and subpixe
1cm throughout this range. Some of the error at the largelisparity resolution achieve a 30 Hz frame rate.
distances comes from calibration, as the reconstructetepla
will not be perfectly flat. Up to over 1 meter, the error isC- Algorithm and Datasets
about 2mm, which is good enough to reconstruct fine objects. The stereo algorithms and the pattern generators are avail-
Note that we are using a standard stereo block-matchiradple under open source BSD license as part of the ROS
algorithm for these experiments, without modification. Aapplication packages (Robot Operating Systerhti p:
concern is that, because of the blockiness of the patterh/ www. r 0s. or g/ Paper s/ | CRA2010_Konol i ge).
subpixel resolution in the disparity calculation might not
be possible, because the block correlation does not have V. CONCLUSIONS ANDFUTURE WORK
a smooth transition across the image. However, becauseWe have explored the concept of good projection textures
of significant blur in both camera and projector, subpixefor overcoming stereo dropouts, both at the conceptual leve
resolution works well, as can be seen in Figure 1. The 3Bf finding patterns that exhibit good dissimilarity betwesh
points on the cup, for example, would not fit a curve so welblocks in a search range, and at the system level of dealing
without sub-pixel resolution. with image resolution, phase and blur. The fixed-pattern
Even with a very dark (5% reflectance) target, the systeprojection and stereo device that we constructed is a pedcti
gives good results up to 2m, with some degradation in err@ensor system for robotics applications, filling a niche for
at the larger distance. Another issue with very dark targets short range dense 3D sensing that can deal with moving ob-
that dropouts start to occur. We set a cutoff of 18% for thgcts. It is being incorporated into the PR2 mobile roboitt bu
minimum distance between the highest and second-highedtWillow Garage fit t p: / / www. wi | | owgar age. conj,
SAD response. For the white target, every pixel made thend will be the primary sensor for tabletop manipulation.
cutoff. For the dark target, dropouts start to occur at 1.2m, One problem with the sensor is that the strong red pro-
and increase linearly to 2.5m, when there are no pixels thpcted texture is annoying when viewed directly. The aeersi
make the cutoff. response helps to make the device safe, but it is not useful




for directly imaging faces because of this drawback. An IR
version, with lower power and a more sensitive imager, is a
possible solution.
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